Startseite Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)

  • Michael Langenmaier , Tobias Rackl , Dirk Johrendt und Caroline Röhr EMAIL logo
Veröffentlicht/Copyright: 11. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The six isotypic alkali ortho chalcogenido manganates A6[MnIIQ4] (A=Rb, Cs; Q=S, Se, Te) were synthesized – in most cases in pure phase – from stoichiometric mixtures of the manganese monochalcogenides MnQ, the elemental chalcogens and Rb2S/Cs2S2 (sulfido salts) or the pure alkali elements (selenido and tellurido salts) as alkali sources at maximum temperatures between 650 and 800°C. Their hexagonal crystal structures were refined by means of X-ray single crystal data (space group P63mc, Na6ZnO4-type structure, Z=2; A/Q: Rb/S: a=1019.34(2), c=792.560(10) pm, R1=0.0166; Rb/Se: a=1055.74(2), c=821.14(2) pm, R1=0.0275; Rb/Te: a=1126.68(2), c=860.54(2) pm, R1=0.0152; Cs/S: a=1056.68(2), c=831.22(2) pm, R1=0.0168; Cs/Se: a=1096.04(3), c=858.13(2) pm, R1=0.0194; and Cs/Te: a=1167.72(3), c=896.95(2) pm, R1=0.0140). The chiral structures contain isolated C3 symmetric, but very close to ideal tetrahedral, ortho manganate(II) anions [MnIIQ4]6− with Mn–Q distances of 248.7–250.7 (Q=S), 260.7–263.0 (Q=Se) and 280.0–282.4 pm (Q=Te). The chalcogenide ions form a hexagonal closed packing with slightly puckered 36 nets, in which the A(2) cations occupy 3/4 of the octahedral interstices, whereas Mn takes 1/8 and A(1) 3/8 of the tetrahedral voids. Magnetic measurements on the three Cs compounds showed Curie-Weiss behavior down to a temperature of 1.9 K, with magnetic moments significantly reduced with respect to the expected spin-only value of a d5 ion. The electronic band structures of the four salts (Na/Rb)6Mn(S/Te)4, which were calculated within the GGA+U approach, allow a comparison of the chemical bonding characteristics and the magnetic properties within the alkali cation and the chalcogenido ligand series.


Dedicated to: Professor Bernt Krebs on the occasion his 80th birthday.


Acknowledgments

We would like to thank the Deutsche Forschungsgemeinschaft for financial support.

References

[1] W. Bronger, P. Müller, J. Alloys Compd.1997, 246, 27.10.1016/S0925-8388(96)02459-0Suche in Google Scholar

[2] W. Bronger, Angew. Chem. Int. Ed. Engl.1981, 20, 52.10.1002/anie.198100521Suche in Google Scholar

[3] M. R. Harrison, M. G. Francesconi, Coord. Chem. Rev.2011, 255, 451.10.1016/j.ccr.2010.10.008Suche in Google Scholar

[4] M. Schwarz, M. Haas, C. Röhr, Z. Anorg. Allg. Chem.2013, 639, 360.10.1002/zaac.201200397Suche in Google Scholar

[5] P. Müller, W. Bronger, Z. Naturforsch.1979, 34b, 1264.10.1515/znb-1979-0920Suche in Google Scholar

[6] P. Müller, W. Bronger, Z. Naturforsch.1981, 36b, 646.10.1515/znb-1981-0518Suche in Google Scholar

[7] W. Bronger, U. Ruschewitz, P. Müller, J. Alloys Compd.1992, 187, 95.10.1016/0925-8388(92)90525-ESuche in Google Scholar

[8] W. Bronger, H. S. Genin, P. Müller, Z. Anorg. Allg. Chem.1999, 625, 274.10.1002/(SICI)1521-3749(199902)625:2<274::AID-ZAAC274>3.0.CO;2-2Suche in Google Scholar

[9] W. Bronger, U. Ruschewitz, J. Alloys Compd.1993, 198, 177.10.1016/0925-8388(93)90162-GSuche in Google Scholar

[10] M. Schwarz, P. Stüble, C. Röhr, Z. Naturforsch.2017, 72b, 529.10.1515/znb-2017-0076Suche in Google Scholar

[11] M. Schwarz, C. Röhr, Inorg. Chem.2015, 54, 1038.10.1021/ic502382vSuche in Google Scholar

[12] W. Bronger, M. Kimpel, D. Schmitz, Angew. Chem. Int. Ed. Engl.1982, 21, 544.10.1002/anie.198205441Suche in Google Scholar

[13] P. Stüble, A. Berroth, C. Röhr, Z. Naturforsch.2016, 71b, 485.10.1515/znb-2015-0223Suche in Google Scholar

[14] Z. Seidov, H.-A. K. von Nidda, V. Tsurkan, I. G. Filippova, A. Günther, T. P. Gavrilova, F. G. Vagizov, A. G. Kiiamov, L. R. Tagirov, A. Loidl, Phys. Rev. B2016, 94, 134414.10.1103/PhysRevB.94.134414Suche in Google Scholar

[15] P. Stüble, C. Röhr, Z. Anorg. Allg. Chem.2017, 643, 1462.10.1002/zaac.201700263Suche in Google Scholar

[16] R. H. Mitchell, K. C. Ross, E. G. Potter, J. Solid State Chem.2004, 177, 1867.10.1016/j.jssc.2004.01.007Suche in Google Scholar

[17] M. Schwarz, C. Röhr, Z. Anorg. Allg. Chem.2015, 641, 1053.10.1002/zaac.201500097Suche in Google Scholar

[18] M. Atanasov, R. H. Potze, G. A. Sawatzky, J. Solid State Chem.1995, 199, 380.10.1016/0022-4596(95)80056-USuche in Google Scholar

[19] P. Stüble, S. Peschke, D. Johrendt, C. Röhr, J. Solid State Chem.2018, 258, 416.10.1016/j.jssc.2017.10.033Suche in Google Scholar

[20] K. O. Klepp, W. Bronger, Z. Anorg. Allg. Chem.1986, 532, 23.10.1002/zaac.19865320105Suche in Google Scholar

[21] W. Bronger, H. Balk-Hardtdegen, U. Ruschewitz, Z. Anorg. Allg. Chem.1992, 616, 14.10.1002/zaac.19926161003Suche in Google Scholar

[22] W. Bronger, U. Ruschewitz, J. Alloys Compd.1993, 197, 83.10.1016/0925-8388(93)90622-TSuche in Google Scholar

[23] W. Bronger, H. Balk-Hardtdegen, Z. Anorg. Allg. Chem.1989, 574, 89.10.1002/zaac.655740109Suche in Google Scholar

[24] W. Bronger, M. Böhmer, P. Müller, J. Alloys Compd.2002, 338, 116.10.1016/S0925-8388(02)00224-4Suche in Google Scholar

[25] K. Klepp, W. Bronger, Z. Naturforsch.1983, 38b, 12.10.1515/znb-1983-0105Suche in Google Scholar

[26] W. Bronger, C. Bomba, J. Less-Common Met.1990, 162, 309.10.1016/0022-5088(90)90346-LSuche in Google Scholar

[27] W. Bronger, C. Bomba, W. Koelman, Z. Anorg. Allg. Chem.1995, 621, 409.10.1002/zaac.19956210312Suche in Google Scholar

[28] W. Bronger, W. Koelmann, P. Müller, Z. Anorg. Allg. Chem.1995, 621, 412.10.1002/zaac.19956210313Suche in Google Scholar

[29] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr.1977, 10, 73.10.1107/S0021889877012898Suche in Google Scholar

[30] A. C. Larson, R. B. V. Dreele. General Structure Analysis System (Gsas). Los Alamos National Laboratory Report LAUR 86-748, 2000.Suche in Google Scholar

[31] B. H. Toby, J. Appl. Crystallogr.2001, 34, 210.10.1107/S0021889801002242Suche in Google Scholar

[32] G. Brauer. Handbuch der präparativen anorganischen Chemie, Enke Verlag, Stuttgart, 1981.Suche in Google Scholar

[33] W. Bronger, H. Hardtdegen, M. Kanert, P. Müller, D. Schmitz, Z. Anorg. Allg. Chem.1996, 622, 313.10.1002/zaac.19966220218Suche in Google Scholar

[34] W. Bronger, H. Balk-Hardtdegen, D. Schmitz, Z. Anorg. Allg. Chem.1989, 574, 99.10.1002/zaac.655740110Suche in Google Scholar

[35] P. Kastner, R. Hoppe, Z. Anorg. Allg. Chem.1974, 409, 69.10.1002/zaac.19744090109Suche in Google Scholar

[36] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar

[37] G. M. Sheldrick. Sadabs, Program for absorption correction for data from area detector frames, Bruker Analytical X-ray Systems, Inc. Madison Wisconsin, (USA), 2008.Suche in Google Scholar

[38] Further details on the crystal structure investigation are available from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen 2 on quoting the depository numbers CSD 434610 (Rb6MnS4), 434611 (Rb6MnSe4), 434612 (Rb6MnTe4), 434613 (Cs6MnS4), 434614 (Cs6MnSe4) and 434615 (Cs6MnTe4), the names of the authors, and citation of the paper (E-mail: crysdata@fiz-karlsruhe.de).Suche in Google Scholar

[39] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz. Wien2k, An augmented plane wave and local orbital program for calculating crystal properties. TU Wien, Vienna (Austria) ISBN3-9501031-1-2, 2006.Suche in Google Scholar

[40] J. P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett.1996, 77, 3865.10.1103/PhysRevLett.77.3865Suche in Google Scholar

[41] A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. A. Persson, G. Ceder, Comp. Mater. Sci.2011, 50, 2295.10.1016/j.commatsci.2011.02.023Suche in Google Scholar

[42] V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, G. A. Sawatzky, Phys. Rev. B1993, 48, 16929.10.1103/PhysRevB.48.16929Suche in Google Scholar

[43] A. I. Lichtenstein, V. I. Anisimov, J. Zaanen, Phys. Rev. B1995, 52, R5467.10.1103/PhysRevB.52.R5467Suche in Google Scholar

[44] A. Kokalj, J. Mol. Graphics Modell.1999, 17, 176.10.1016/S1093-3263(99)00028-5Suche in Google Scholar

[45] L. W. Finger, M. Kroeker, B. H. Toby, J. Appl. Crystallogr.2007, 40, 188.10.1107/S0021889806051557Suche in Google Scholar

[46] R. W. F. Bader, Atoms in Molecules. A Quantum Theory, International Series of Monographs on Chemistry, Clarendon Press, Oxford 1994.Suche in Google Scholar

[47] A. O. de-la Roza, M. A. Blanco, A. Martá, A. M. Pendás, V. Luaña, Comput. Phys. Commun.2009, 180, 157.10.1016/j.cpc.2008.07.018Suche in Google Scholar

[48] A. O. de-la Roza, V. Luaña, J. Comput. Chem.2010, 32, 291.10.1002/jcc.21620Suche in Google Scholar PubMed

[49] M. N. Burnett, C. K. Johnson. Ortep-III. ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, Tennessee (USA) 1996.Suche in Google Scholar

[50] R. D. Shannon, Acta Crystallogr.1976, A32, 751.10.1107/S0567739476001551Suche in Google Scholar

[51] H. Bärnighausen, Match Commun. Math. Comput. Chem.1980, 9, 139.Suche in Google Scholar

[52] U. Müller, Z. Anorg. Allg. Chem.2004, 630, 1519.10.1002/zaac.200400250Suche in Google Scholar

[53] FIZ Karlsruhe. Inorganic Crystal Structure Database, 2018.Suche in Google Scholar

[54] H. Sommer, R. Hoppe, Z. Anorg. Allg. Chem.1978, 443, 201.10.1002/zaac.19784430122Suche in Google Scholar

[55] P. Burlet, E. Ressouche, B. Malaman, R. Welter, J. P. Sanchez, P. Vulliet, Phys. Rev. B1997, 56, 14013.10.1103/PhysRevB.56.14013Suche in Google Scholar

[56] M. Wakeshima, Y. Hinatsu, K. Oikawa, Y. Shimojo, Y. Morii, J. Mater. Chem.2000, 10, 2183.10.1039/b001532fSuche in Google Scholar

[57] M.-H. Whangbo, H.-J. Koo, D. Dai, J. Solid State Chem.2003, 176, 4147.10.1016/S0022-4596(03)00273-1Suche in Google Scholar

[58] M. Mödl, M. Dolg, P. Fulde, H. Stoll, J. Chem. Phys.1997, 106, 1836.10.1063/1.473337Suche in Google Scholar

[59] A. Rohrbach, J. Hafner, G. Kresse, J. Phys.: Condens. Matter.2003, 15, 979.10.1088/0953-8984/15/6/325Suche in Google Scholar

[60] A. Devey, N. H. de Leeuw, Phys. Rev. B2010, 82, 235112.10.1103/PhysRevB.82.235112Suche in Google Scholar

[61] J. Zaanen, G. A. Sawatzky, J. W. Allen, Phys. Rev. Lett.1985, 55, 418.10.1103/PhysRevLett.55.418Suche in Google Scholar PubMed

Received: 2018-07-01
Accepted: 2018-07-21
Published Online: 2018-09-11
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0138/html
Button zum nach oben scrollen