Home (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
Article
Licensed
Unlicensed Requires Authentication

(NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra

  • Daniela Vitzthum , Klaus Wurst and Hubert Huppertz EMAIL logo
Published/Copyright: July 28, 2018
Become an author with De Gruyter Brill

Abstract

The first ammonium indium borate (NH4)InB8O14 was synthesized from indium oxide and boric acid under high-pressure/high-temperature conditions of 9 GPa and 1000°C with a Walker-type multianvil apparatus in a BN crucible. Although a reproduction of this synthesis product failed until now, we were able to determine the crystal structure via single-crystal X-ray diffraction data collected at room temperature. (NH4)InB8O14 crystallizes in the monoclinic space group P2/m (Z=2) with a=4.4053(2), b=7.8184(3), c=12.4685(4) Å, β=94.60(1)°, and V=428.06(3) Å3. The structure comprises all three basic structural units of borates, namely corner-sharing BO4 tetrahedra, edge-sharing BO4 tetrahedra, and planar BO3 groups. Large cavities in the borate network give space to disordered, isolated ammonium ions. The presence of nitrogen (confirmed by EDX analysis) appears to originate from the container material.


Dedicated to: Professor Werner Uhl on the occasion of his 65th birthday.


Acknowledgements

We thank Dr. Gunter Heymann for the recording of the single-crystal data.

References

[1] T. Welker, J. Lumin.1991, 48, 49.10.1016/0022-2313(91)90075-7Search in Google Scholar

[2] D. Vitzthum, K. Wurst, J. Pann, P. Brüggeller, M. Seibald, H. Huppertz, Angew. Chem. Int. Ed.2018, 57, DOI: 10.1002/anie.201804083 (in press).10.1002/anie.201804083Search in Google Scholar PubMed PubMed Central

[3] D. Vitzthum, K. Wurst, J. Prock, P. Bruggeller, H. Huppertz, Inorg. Chem.2016, 55, 11473.10.1021/acs.inorgchem.6b02029Search in Google Scholar PubMed

[4] J. R. Cox, D. A. Keszler, Acta Crystallogr.1994, C50, 1857.10.1107/S0108270194003999Search in Google Scholar

[5] R. Cong, T. Yang, H. Li, F. Liao, Y. Wang, J. Lin, Eur. J. Inorg. Chem.2010, 2010, 1703.10.1002/ejic.200901078Search in Google Scholar

[6] D. Vitzthum, M. Schauperl, K. R. Liedl, H. Huppertz, Z. Naturforsch.2017, 72b, 69.10.1515/znb-2016-0211Search in Google Scholar

[7] T. S. Ortner, D. Vitzthum, G. Heymann, H. Huppertz, Z. Anorg. Allg. Chem.2017, 643, 2103.10.1002/zaac.201700353Search in Google Scholar

[8] D. Vitzthum, L. Bayarjargal, B. Winkler, H. Huppertz, Inorg. Chem.2018, 57, 5554.10.1021/acs.inorgchem.8b00518Search in Google Scholar PubMed

[9] D. Vitzthum, H. Huppertz, Z. Kristallogr. – NCS2018, 233, 733.Search in Google Scholar

[10] H. Huppertz, B. von der Eltz, J. Am. Chem. Soc.2002, 124, 9376.10.1021/ja017691zSearch in Google Scholar PubMed

[11] S. Jin, G. Cai, W. Wang, M. He, S. Wang, X. Chen, Angew. Chem. Int. Ed.2010, 49, 4967.10.1002/anie.200907075Search in Google Scholar PubMed

[12] G. Sohr, D. M. Többens, J. Schmedt auf der Günne, H. Huppertz, Chem. Eur. J.2014, 20, 17059.10.1002/chem.201404018Search in Google Scholar PubMed

[13] G. Sohr, S. C. Neumair, G. Heymann, K. Wurst, J. Schmedt auf der Günne, H. Huppertz, Chem. Eur. J.2014, 20, 4316.10.1002/chem.201303550Search in Google Scholar PubMed

[14] G. Sohr, D. Wilhelm, D. Vitzthum, M. K. Schmitt, H. Huppertz, Z. Anorg. Allg. Chem.2014, 640, 2753.10.1002/zaac.201400312Search in Google Scholar

[15] S. C. Neumair, S. Vanicek, R. Kaindl, D. M. Többens, C. Martineau, F. Taulelle, J. Senker, H. Huppertz, Eur. J. Inorg. Chem.2011, 2011, 4147.10.1002/ejic.201100618Search in Google Scholar

[16] G. Sohr, S. C. Neumair, H. Huppertz, Z. Naturforsch.2012, 67b, 1197.10.5560/znb.2012-0248Search in Google Scholar

[17] G. Sohr, L. Perfler, H. Huppertz, Z. Naturforsch.2014, 69b, 1260.10.5560/znb.2014-4124Search in Google Scholar

[18] H. Huppertz, Z. Kristallogr.2004, 219, 330.10.1524/zkri.219.6.330.34633Search in Google Scholar

[19] D. Walker, M. A. Carpenter, C. M. Hitch, Am. Mineral.1990, 75, 1020.Search in Google Scholar

[20] D. Walker, Am. Mineral.1991, 76, 1092.10.1007/978-1-4615-3968-1_10Search in Google Scholar

[21] G. M. Sheldrick, Sadabs 2014/5, Bruker AXS Inc., Madison, Wisconsin (USA) 2001.Search in Google Scholar

[22] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

[23] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Search in Google Scholar

[24] L. J. Farrugia, J. Appl. Crystallogr.2012, 45, 849.10.1107/S0021889812029111Search in Google Scholar

[25] F. Liebau, Structural Chemistry of Silicates, Springer-Verlag, Berlin, 1985.10.1007/978-3-642-50076-3Search in Google Scholar

[26] E. Zobetz, Z. Kristallogr.1990, 191, 45.10.1524/zkri.1990.191.1-2.45Search in Google Scholar

[27] J. S. Knyrim, F. Roessner, S. Jakob, D. Johrendt, I. Kinski, R. Glaum, H. Huppertz, Angew. Chem. Int. Ed.2007, 46, 9097.10.1002/anie.200703399Search in Google Scholar PubMed

[28] H. Emme, H. Huppertz, Acta Crystallogr.2005, C61, 29.10.1107/S0108270104030446Search in Google Scholar

[29] E. Zobetz, Z. Kristallogr.1982, 160, 81.10.1524/zkri.1982.160.1-2.81Search in Google Scholar

Received: 2018-07-07
Accepted: 2018-07-18
Published Online: 2018-07-28
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0141/html
Scroll to top button