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Abstract

Objectives: The Pasteur effect in cellular energy meta-
bolism is defined as the switch to anaerobic glycolysis due
to alterations in ambient oxygen concentration or inhibition
of the electron transport chain (ETC) and oxidative phos-
phorylation. This study aimed to determine the effect of
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) infection on the energy metabolism of leukocytes
among Coronavirus Disease 2019 (COVID-19) patients at
various stages.
Methods: A total of 90 cases were analyzed in asymptom-
atic, mild, moderate, and severe COVID-19 patients. Levels of
aerobic glycolysis intermediates and products of anaer-
obic glycolysis were measured in leukocytes with liquid
chromatography-tandem mass spectrometry (LC-MS/MS)
analysis.
Results: A decrease in the rate of aerobic glycolysis was
found as the disease progressed (p-values<0.001), while the

anaerobic glycolysis rate was unchanged in all study groups
because lactate levels had no difference between asymp-
tomatic, mild, moderate, and severe groups (p=0.754).
Moreover, the ratios of lactate to Tricarboxylic Acid (TCA)
cycle parameters demonstrated a significant reduction
in the rate of aerobic glycolysis of COVID-19 patients at
different stages (p-values<0.001). Furthermore, Receiver
Operating Characteristic (ROC) curve analysis for citrate,
alpha-ketoglutarate, fumarate, lactate, lactate/citrate,
lactate/alpha-ketoglutarate, and lactate/fumarate had sig-
nificant cut-off values in Moderate and Severe patients
(p<0.001).
Conclusions: Our results suggest that the Pasteur effect
from aerobic to anaerobic glycolysis was shown to be
induced as the severity of COVID-19 progresses.

Keywords: energymetabolism; anaerobic glycolysis; pasteur
effect; COVID-19; SARS-CoV-2

Introduction

Metabolism involves the synthesis and breakdown of mol-
ecules in living organisms, both in normal and pathological
conditions. The primary metabolic pathway in healthy
cells is aerobic glycolysis. Dietary carbohydrates, lipids, and
proteins are broken down into their monomers and con-
verted into acetyl-CoA, a common intermediate, before being
oxidized in the tricarboxylic acid (TCA) cycle. This is fol-
lowed by the electron transport chain (ETC) and oxidative
phosphorylation (OxP) for adenosine triphosphate (ATP)
synthesis [1, 2].

Anaerobic glycolysis is a catabolic pathway that occurs
in cells lacking mitochondria, such as erythrocytes and lens
tissue, as well as in muscle cells during especially intense
training. This pathway results in the formation of lactate
through the lactate dehydrogenase (LDH) enzyme, providing
less ATP per glucose molecule. It is important to note that
this process occurs without the presence of an adequate
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oxygen supply. Therefore, anaerobic glycolysis leads to the
consumption of 15–16 times more substrate (depending on
the shuttle system) than aerobic glycolysis to produce the
same amount of ATP [3–8].

Cells exhibit altered metabolic pathways in various
pathological conditions, resulting in different metabolic
effects. The Pasteur effect is a metabolic phenomenon
observed in cancer cells, certain bacterial and parasitic cells,
and healthy skeletalmuscle cells during intensive training. It
is characterized by a shift towards anaerobic glycolysis
depending on the oxygen concentration of the surrounding
environment and/or due to inhibition of ETS and OxP [3–9].

Studies have demonstrated that the fundamental
metabolic pathways involved in energy production remain
consistent across both normal and pathological conditions.
However, the consumption rates of these metabolic path-
ways can vary depending on the situation, such as in cases of
hematological tumors, metabolic diseases, or infectious
diseases [10–13]. Leukocytes are one of the main formed
components of blood and play a role in inducing immune
response against infection [10–14].

Coronavirus 2019 (COVID-19) is a severe acute respira-
tory syndrome caused by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) [15]. SARS-CoV-2 be-
longs to the Coronaviridae family, which includes large,
enveloped, single-stranded RNA viruses. SARS-CoV-2 infec-
tion can cause a range of symptoms, including fever, cough,
headache, pneumonia, dyspnea, chest pain, malaise, and
multiple organ failure [15–17]. Patients with COVID-19 can be
classified as asymptomatic, mild, moderate, or severe based
on the severity of their illness [15–17]. Numerous scientific
studies have reported variations in routine laboratory re-
sults, particularly in hematological and metabolic parame-
ters, that allow checking the status of SARS-CoV-2 infection
because the hematopoietic system and metabolic pathways
are significantly affected by the evolution of COVID-19 [15].

In this study, we aimed to investigate the Pasteur effect
in COVID-19 patients with different stages by assessing aer-
obic and anaerobic energy metabolism parameters,
including citrate, α-ketoglutarate, fumarate, and lactate
levels in leukocytes.

Materials and methods

This study was carried out at the Gulhane Training and
Research Hospital (GTRH) with Ethical Approval of the
University of Health Sciences’ Ethics Committee (November
30, 2020, numbered 2020-477) and by the permission of the
Scientific Research Platform underlined by the Ministry of
Health (2020-11-20T12_01_17) and the Medical Board of the

GTRH (18.02.2021/2–24). The samples from COVID-19 patients
were collected between December 2020 – April 2021, and the
study was conducted between May – July 2023. Using the
statistical power analysis program, G*Power V3.1.9, a total of
76 patients were divided into four groups, each consisting of
at least 19 patients, with the acceptance of a 95 % confidence
interval, 95 % power value, and 0.5 effect size. Written
informed consent was obtained from all patients.

Levels of aerobic glycolysis intermediates, including
citrate, alpha-ketoglutarate (AKG), and fumarate, as well as
lactate, the end product of anaerobic glycolysis, were
analyzed in leukocytes from COVID-19 patients. We also
measured serum LDH levels in all patient groups.

Subjects

The asymptomatic group (As, n=22) consisted of patients
who were examined with suspicion of COVID-19 due to fili-
ation, tested positive by PCR, and were followed as out-
patients without any clinical symptoms and/or radiological
findings [18].

The mild group (Mi, n=24) contained patients with
mild influenza-like symptoms (fever, cough, headache, sore
throat, malaise, muscle pain, but no dyspnea), no radiolog-
ical findings or minimal lung infiltration, and oxygen satu-
rationmeasured by pulse oximetry (SpO2)≥93 % on room air
at sea level and patients who received inpatient treatment
without supplemental oxygen therapy [18].

The moderate group (Mo, n=22) contains patients with
lower respiratory disease during clinical examination (res-
piratory rate≥24 breaths/min) or radiological diagnosis
showingmoderate lung infiltration and SpO2≤93 on roomair
at sea level and patients who received inpatient treatment
with supplemental oxygen therapy [18].

The severe group (Se, n=22) included patients who
developed acute respiratory distress syndrome (ARDS), had
SpO2<93 on room air at sea level, had a ratio of arterial
partial pressure of oxygen to fraction of inspired oxygen
(PaO2/FiO2)<300 mmHg, received inpatient treatment with
high-flow nasal cannula oxygen therapy or who were con-
nected to mechanical ventilation for treatment [18].

Sample preparation for liquid
chromatography-tandem mass
spectrometry (LC-MS/MS) analysis

Venous blood samples (10 mL) were collected from patients
and stored in ethylenediaminetetraacetate (EDTA)-coated
tubes for peripheral blood mononuclear cells (PBMCs)
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isolation. PBMCs were isolated using Ficoll-hypaque
(Capricorn Scientific GmbH, Ebsdorfergrund, Germany)
density gradient centrifugation according to the manufac-
turer’s instructions. The fractionated cells were stored at
−20 °C until the experiment.

LC-MS/MS analysis was performed using the JASEM
Organic Acid LC-MS/MS Analysis Kit (JASEM, Istanbul,
Turkey). 100 µL of the samples were transferred to a
centrifuge tube. Then, 50 µL of internal standard and 350 µL
of extraction solution (Reagent-1) were added. The mixture
was vortexed for 10 s and centrifuged at 1,800×g for 10 min.
The resulting supernatant was collected into a new vial, and
10 µL of the sample was loaded onto an LC-MS/MS system.

Analytical procedure

LC-MS/MS analysis was performed using the Agilent 6,470
Triple Quad LC-MS/MS system (Table 1) coupled with the
1,290 Binary Pump system and 1,290 Autosampler system
from Agilent Technologies, Inc., USA. The sensitivity limits
were tested bymeasuring different concentrations of citrate,

α-ketoglutarate, fumarate, and lactate through constant
dilution of the stock solution. Tables 1 and 2 present the
LC-MS/MS parameters with multiple reaction monitoring
(MRM) transitions. The limit of quantification (LOQ) values
for citrate, α-ketoglutarate, fumarate, and lactate were
calculated and found to be 0.39, 0.61, 0.06, and 3.54 mg/L,
respectively. The recovery assay values for these four ana-
lytes ranged between 75.9 and 118 %.

Statistical analysis

Statistical analyseswere performedwith SPSS 21.0 (IBM, Inc.,
USA). The normality of variables was assessed using the
Shapiro-Wilks test. The aerobic/anaerobic glycolysis pa-
rameters of study groups were analyzed using the Kruskal-
Wallis test. Mann-Whitney U test was applied for pairwise
comparison of the parameters following a Kruskal-Wallis
test. Receiver Operating Characteristic (ROC) curve analyses
were performed for aerobic and anaerobic glycolysis
markers according to the clinical severity of two groups of
COVID-19 patients (one groupwith As andMi disease and the
other with Mo and Se disease). p-Values<0.05 were accepted
as significant.

Results

This study analyzed a total of 90 cases, comprising 22
asymptomatic (As), 24 mild (Mi), 22 moderate (Mo), and 22
severe (Se) COVID-19 patients. The levels of aerobic glycolysis
intermediates, including citrate, α-ketoglutarate (AKG), and
fumarate, as well as anaerobic glycolysis end product lactate
levels, were reported for all study groups as medians and
interquartile ranges (25–75 %), along with statistical signifi-
cance information, in Table 3.

Table : Parameters and conditions of each recommended setpoint for
the Agilent  LC-MS/MS Mass Spectrometer System.

Parameters Conditions

Ion source ESI (Agilent Jet Stream)
Polarity Positive/Negative
Gas temperature  °C
Gas flow  L/min
Nebulizer pressure  psi
Sheath gas temperature  °C
Sheath gas flow  L/min
Capillary voltage  V (positive)/ V (negative)
Nozzle voltage  V
Resolution MS and MS Unit resolution

Table : The precursor ions, product ions, dwell time, fragmentor voltage (FV), collision energy (CE), collision cell acceleration voltage (CAV), and polarity
of each measured analyte.

Analyte Precursor ion, m/z Product ion, m/z Dwell time, ms FV, V CE, eV CAV, V Polarity

Citrate  .     Negative
α-ketoglutarate  .     Negative
Fumarate .      Negative
Lactate       Negative
Pyruvate-ISTD  .     Negative
Glutarate-ISTD . .     Negative
Fumarate-ISTD , .     Negative
Lactate-ISTD  .     Negative

ISTD, internal standard.
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A statistically significant decrease was observed in all
aerobic glycolysis parameters, including citrate, AKG, and
fumarate levels, with prognosis severity of COVID-19 pa-
tients (Table 3, Supplemental Figure 1A–C, p-values<0.001).
As seen in Table 3 and Supplemental Figure 1A, citrate levels
were reduced by 7–22 times while both AKG and fumarate
levels were dropped by two–four folds between As and
Mi, Mo, and Se groups, individually (p-values<0.001). These
results indicated a significant reduction in the rate of aero-
bic glycolysis with increasing disease severity. However, the
statistical analysis of an anaerobic glycolysis parameter,
lactate levels, reported no significant difference among
all study groups (Table 3, Supplemental Figure 1D,
p-value=0.724>0.05). Serum LDH activities rose considerably
as the severity of the disease increased (Table 3), reflecting
enhanced anaerobic catabolism of glucose in the body.

A significant reduction was also found in the citrate and
AKG levels of Mo and Se groups when compared with those
in the Mi group (Table 3, Supplemental Figure 1A and B,
p-values<0.01). We further calculated the ratios of lactate to
the parameters, including citrate, AKG, and fumarate, as
well as the ratio of AKG to fumarate, separately to better
evaluate the catabolic reprogramming in leukocyte meta-
bolism. Lactate/citrate and lactate/fumarate ratios were
significantly increased inMi,Mo, and Se groups as compared
to those in As group (Figure 1A–C, p-values<0.001) while
lactate/AKG ratios were significantly higher in Mo and Se
but, not in Mi, than As group (Figure 1B, p-values<0.001). Our
results, in general, indicated that lactate/citrate, lactate/AKG,
and lactate/fumarate ratios were found to be significantly
higher as the severity of the disease increased (Figure 1A–C,
p-values<0.001). Although the comparisons of parameter
measurements proposed similar conclusions (Table 3,

Supplemental Figure 1), the calculated ratios (Table 3,
Figure 1) recurrently revealed a remarkable decrease in the
rate of aerobic glycolysis within the leukocytemetabolism of
COVID-19-patients with different stages. However, we found
no variation in AKG/fumarate ratios amongst the study
groups (Figure 1D, p-value=0.586>0.05).

ROC curve analyses were performed to evaluate the
area under the curve (AUC) and cut-off values of aerobic and
anaerobic glycolysis parameters in determining the severity
of COVID-19. The cut-off points that predicted the severity of
COVID-19 patients (between As+Mi and Mo+Se) in the ROC
curve using the Youden’s index for citrate and for lactate/
citrate ratio were <1.85 μg/L/PBMC (sensitivity 77.3 %, speci-
ficity 89.1 %, AUC: 0.891, CI 95 %: 0.824–0.957) and >1.85 μg/L/
PBMC (sensitivity 86.4 %, specificity 91.3 %, AUC: 0.941, CI
95 %: 0.894–0.988), respectively. Moreover, the ROC analysis
for AKG, fumarate, ratio of lactate/AKG, and lactate/fuma-
rate also estimated significant threshold values between
As+Mi and Mo+Se COVID-19 patients, and the data were
presented in Figure 2 and Table 4.

Discussion

Different metabolic adaptations have been identified in hu-
man bodies with various cancer types, pathologies, and
metabolic diseases or in healthy cells (for instance, muscle
tissues during vigorous activity) as a result of changing
environmental conditions. The Pasteur effect is such a
metabolic adaptation characterized by a switch fromaerobic
glycolysis to anaerobic glycolysis in response to low oxygen
levels of the environment, interference with the ETS and OP,
or both [3–9]. Consequently, net ATP gain from one mol of

Table : Median and interquartile range (–%) levels of leukocyte aerobic glycolysis intermediates, citrate, alpha-ketoglutarate (AKG), and fumarate
as well as anaerobic glycolysis end product, lactate, for all study groups.

Groups Asymptomatic, As Mild, Mi Moderate, Mo Severe, Se Total p-Values

Parameters, µg/L/PBMC

Citratea Sigb
. (.–.) . (.–.) . (.–.) . (.–.) . (.–.) <.

AKGa Sigb
. (.–.) . (.–.) . (.–.) . (.–.) . (.–.) <.

Fumaratea Sigc
. (.–.) . (.–.) . (.–.) . (.–.) . (.–.) <.

Lactatea . (.–.) . (.–.) . (.–.) . (.–.) . (.–.) .
Serum LDH Sigd

 (–)  (–)  (–)  (–)  (–) <.
Lactate/Citrate Sigb

. (.–.) . (.–.) . (.–.) . (.–.) . (.–.) <.
Lactate/AKG Sige

. (.–.) . (.–.) . (.–.) . (.–.) . (.–.) <.
Lactate/Fumarate Sigf

. (.–.) . (.–.) . (.–.) . (.–.) . (.–.) <.
AKG/Fumarate . (.–.) . (.–.) . (.–.) . (.–.) . (.–.) .

Sig: Denotes statistical significance with p-values < . reached from the Mann-Whitney U test following a Kruskal-Wallis test; a Citrate, α-ketoglutarate
(AKG); fumarate, and lactate valueswere corrected according to peripheral bloodmononuclear cell (PBMC) counts ( leucocytes/mm); b As –Mi, As –Mo,
As – Se; Mi –Mo, Mi – Se; c As –Mi, As –Mo, As – Se; d As –Mi, As –Mo, As – Se; Mi –Mo, Mi – Se; Mo – Se; e As –Mo, As – Se; Mi –Mo, Mi – Se; f As –Mi, As
– Mo, As – Se; Mi – Se.
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glucose decreases while the excessive substrate utilization
and lactate concentration in the cells increase [3–10, 14].
Although there have been several studies on the host

metabolism landscape of COVID-19 patients, metabolic
regulation that occurs during different stages of infection
has not been thoroughly investigated [15, 19–24].

Figure 1: The comparison of lactate/citrate (A) and lactate/alpha-ketoglutarate (B), lactate/fumarate (C), and alpha-ketoglutarate/fumarate (D) ratios in
leukocytes of patients with asymptomatic, mild,moderate and severe COVID-19 infection. p-Valueswere reached from theMann-WhitneyU test following
a Kruskal-Wallis test. p-Values<0.05 were considered as significant. *No statistical significance was observed between groups for alpha-ketoglutarate/
fumarate ratios.

Figure 2: ROC curves were constructed to illustrate the AUC for aerobic and anaerobic glycolysis markers associated with the severity of COVID-19. The
prognostic value of AKG, fumarate, lactate, and citrate levels (A), and the ratios of lactate to the mentioned parameters in determining the degree of
severity in patients with COVID-19 and the proportion of AKG to fumarate to demonstrate the integrity of the TCA cycle (B).
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In this study, we measured citrate, AKG, fumarate, and
lactate levels as indicators of aerobic and anaerobic glycol-
ysis to determine the Pasteur effect in leukocytes of
COVID-19 patients at different disease phases. The measured
citrate, AKG, and fumarate levels, as well as the ratios of
lactate to citrate, to AKG, and to fumarate, showed that the
rate of aerobic glycolysis decreased with the progression of
COVID-19 infection, whereas anaerobic glycolysis level did
not significantly alter in all study groups (Table 3, Figure 1,
and Supplemental Figure 1). In addition, serumLDH levels as
a metabolic and prognostic biomarker of immune surveil-
lance [25] increased significantly with disease severity and
favored anaerobic glycolysis and respiratory failure during
COVID-19 infection in our study (Table 3). The comparison of
LDH levels in serum and leukocytes does not have to show a
correlation [26]. Thus, the increase in serum LDH levels was
not reflected in PBMS lactate levels in our study. Although
patients in the Mo and Se groups were hospitalized and
received medication and supplemental oxygen therapy, the
fact that aerobic glycolysis reduced prominently with
increasing disease severity can be considered evidence of
hypoxemia in COVID-19 patients [24]. Thus, the metabolic
switch from aerobic to anaerobic glycolysis reveals the in-
duction of the Pasteur effect in progressive COVID-19 cases.

The induction of the Pasteur effect in COVID-19 patients
might be due to the high energy demands of invading SARS-
CoV-2 viruses for viral replication and immune response
regulation [27]. Although anaerobic glycolysis yields less ATP
than aerobic glycolysis for each molecule of glucose, it en-
ables approximately 100 times faster synthesis of ATP than
OP [28, 29]. Thus, the metabolism of COVID-19 patients shif-
ted towards anaerobic glycolysis to supply energy for rapid
viral proliferation, especially during the hyperinflammatory
phase of the disease [28, 29].

Defective mitochondrial quality and function were also
observed in diverse tissue cells of patientswith COVID-19 [30,
31]. Although possible mitochondrial dysfunction due to
COVID-19 infection could be responsible for the depression
of aerobic glycolysis, our data revealed no changes in AKG/
fumarate ratios across study groups (Figure 1D). The

constant rate of AKG/fumarate suggested that the TCA cycle
was not fully affected in terms of its ATP production func-
tion. Thisfinding has also confirmed that there is no problem
with the mitochondrial metabolism of pyruvate into acetyl
CoA,which is directed towards the TCA cycle, but therewas a
shift to lactate production, indicating anaerobic glycolysis
[32]. In our study, the shift to anaerobic glycolysis was sup-
ported by the increase in lactate to AKG, citrate, and fuma-
rate ratios with disease severity.

Reduced levels of aerobic glycolysis intermediates in
COVID-19 patients suggest the need for dietary support,
particularly with citrate, AKG, and fumarate. Our assump-
tion was confirmed by Agarwal et al. 2022, who showed that
dietary supplementation of SARS-CoV2-infected mice with
AKG significantly alleviated pro-inflammatory and pro-
thrombotic responses in their leukocytes and platelets [33].
Furthermore, AKG rescued the animals from COVID-19
infection and restored normal SpO2 levels in the blood cir-
culation [33]. One another study performed by Pérez-
Hernández et al. indicated that the treatment of human
monocytes with fumarate considerably enhanced the ca-
pacity of mitochondria for energy production [34]. There-
fore, support for COVID-19 patients with supplements rich in
TCA cycle intermediates such as citrate, AKG, and fumarate
may not only speed up the healing time from the disease but
also compensate for the decreased rate of aerobic glycolysis
as reported in our study.

A recent study by Ceballos et al. 2022 characterized
plasma metabolic and cytokine profiles at COVID-19 onset
[35]. Lactate, aspartate, and L-tryptophan metabolites were
differentially expressed between plasma samples of COVID-
positive and COVID-negative patients as well as between
severe and moderate groups, while citrate, citrulline, iso-
citrate, L-glycine, and cysteine glutathione were dysregu-
lated between plasma samples of symptomatic mild and
asymptomatic as well as severe andmoderate groups [35]. In
consistency with our results in leukocytes (Table 3), there
was a substantial downregulation of citrate levels in samples
of theMi, Mo, and Se group as compared to the As group [35].
Additionally, a significant reduction was also detected in the

Table : Receiver Operating Characteristic (ROC) analysis data for alpha-ketoglutarate (AKG), fumarate, and citrate.

Parameters Cut off, µg/L/PBMC Sensitivity, % Specificity, % AUC CI % p-Values

AKG <. . . . .–. <.
Fumarate <. . . . .–. <.
Citrate <. . . . .–. <.
Lactate/Citrate >. . . . .–. <.
Lactate/AKG >. . . . .–. <.
Lactate/Fumarate >. . . . .–. <.

Lactate and AKG/Fumarate values were not presented due to p-values = . and ., respectively; AUC, area under the curve; CI, confidence interval.
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AKG levels of theMo and Se groups in comparisonwith those
in the As and Mi groups (Table 3). These findings strongly
supported that the rate of aerobic glycolysis significantly
decreased as the severity of the disease increased [35].
Although no significant difference was found in leukocyte
AKG levels between Mo and Se groups (Table 3), it was sug-
gested as a downregulated intermediate in the pairwise
comparison of Se and Mo patients’ plasma samples [35].

Moreover, fumarate was upregulated in COVID-19-
negative patients compared to COVID-19-positive ones,
while it was not significant when comparing patients with
COVID-19 at different stages [35]. However, we have shown a
significant decrease in leukocyte fumarate levels of the Mi,
Mo, and Se groups as compared to the As group (Table 3).
Surprisingly, lactate levels were significantly lower in
plasma samples of the Se group than in theMo group [34], for
whichwe could notfind any significant difference in isolated
PBMC samples of these two groups (Table 3). Our results
indicated that the rate of aerobic glycolysis declined in the
later stages of the disease despite the medication and sup-
plemental oxygen therapy. Although plasma levels of some
common metabolites such as citrate, AKG, fumarate, and
lactate were checked in previous studies, the Pasteur effect
in leukocyte energy metabolism of COVID-19 patients was
first declared by this study.

ROC, sensitivity, specificity, and cut-off values were
determined for the levels and ratios of aerobic and anaer-
obic glycolysis markers. The predicted threshold values for
the citrate level (<1.85 μg/L/PBMC, p<0.001) and ratio of
lactate to citrate (>1.85, p<0.001) appeared to showmetabolic
reprogramming in COVID-19 patients who progressed from
Mi to Se state (Figure 2 and Table 4). Particularly, lactate to
citrate ratio of >1.85 might be applied to clinical practice to
have the best adequate discriminatory power for the prog-
nosis severity of COVID-19. However, several studies have
suggested certain hematologic parameters (such as alanine
aminotransferase (ALT/SGPT), neutrophil-to-leukocyte ratio
and high-sensitive-C-reactive protein [36] and serum
metabolome (including D-fructose, succinate and 2-hydrox-
ybutyrate) [37] as a predictor of COVID-19 severity, none of
those have mentioned the lactate/citrate ratio as a
biochemical indicator of metabolic alterations in predicting
the progression of Mo to Se degrees of severity in COVID-19
patients [36–38]. Therefore, the present study is expected to
contribute to existing literature in this regard.

In conclusion, COVID-19 might not only suggest
impaired immune function and cytotoxicity but also explain
the Pasteur effect of SARS-CoV-2 infection on the energy
metabolism of leukocytes among different COVID-19 severity
groups. However, further studies are needed to elucidate the
molecular mechanisms underpinning adaptations in

carbohydrate, lipid, and protein metabolisms during
COVID-19. Ultimately, the knowledge gained of SARS-CoV-2-
induced metabolic reprogramming would enable the
development of novel therapeutic strategies against the
COVID-19 pandemic.

Research ethics: University of Health Sciences’ Ethics
Committee (November 30, 2020, numbered 2020-477).
Informed consent: Not applicable.
Author contributions: All authors have accepted re-
sponsibility for the entire content of this manuscript and
approved its submission.
Use of Large Language Models, AI and Machine Learning
Tools: None declared.
Conflict of interest: The authors state no conflict of interest.
Research funding: None declared.
Data availability: The raw data can be obtained on request
from the corresponding author.

References

1. Krohn KA, Link JM,Mason RP.Molecular imaging of hypoxia. J NuclMed
2008;49:129S–48S.

2. Baker JM, Nederveen JP, Parise G. Aerobic exercise in humansmobilizes
HSCs in an intensity-dependent manner. J Appl Physiol 2017;122:182–
90.

3. Tielens AG. Energy generation in parasitic helminths. Parasitol Today
1994;10:346–52.

4. Tielens AG, van de Pas FA, van den Heuvel JM, van den Bergh SG. The
aerobic energy metabolism of Schistosoma mansoni miracidia. Mol
Biochem Parasitol 1991;46:181–4.

5. Summers JE, Ratcliffe RG, Jackson MB. Anoxia tolerance in the aquatic
monocot Potamogeton pectinatus absence of oxygen stimulates
elongation in association with an unusually large pasteur effect. J Exp
Bot 2000;51:1413–22.

6. Boyunaga H, Schmitz MG, Brouwers JF, Van Hellemond JJ, Tielens AG.
Fasciola hepatica miracidia are dependent on respiration and
endogenous glycogen degradation for their energy generation.
Parasitology 2001;122:169–73.

7. Epstein T, Xu L, Gillies RJ, Gatenby RA. Separation of metabolic supply
and demand: aerobic glycolysis as a normal physiological response to
fluctuating energetic demands in the membrane. Cancer Metabol
2014;2:7.

8. Harvey RA, Ferrier DR. Lippincott’s illustrated reviews: biochemistry,
5th ed. Philadelphia: Wolters Kluwer Health; 2011:520 p.

9. Pasteur L. Expériences et vues nouvelles sur la nature des
fermentations. Comptes Rendus 1861;52:1260–4.

10. Gibellini L, De Biasi S, Paolini A, Borella R, Boraldi F, Mattioli M, et al.
Altered bioenergetics and mitochondrial dysfunction of monocytes in
patients with COVID-19 pneumonia. EMBO Mol Med 2020;12:e13001.

11. Beck WS, Valentine WN. The aerobic carbohydrate metabolism of
leukocytes in health and leukemia. I. Glycolysis and respiration. Cancer
Res 1952;12:818–22.

12. Webster KA. Evolution of the coordinate regulation of glycolytic
enzyme genes by hypoxia. J Exp Biol 2003;206:2911–22.

Ortatatli et al.: Pasteur effect on COVID-19 401



13. Hume DA, Weidemann MJ. Role and regulation of glucose metabolism
in proliferating cells. J Natl Cancer Inst 1979;62:3–8.

14. Kenar L, Boyunaga H, Serdar M, Karayilanoglu T, Erbil MK. Effect of
nitrogen mustard, a vesicant agent, on lymphocyte energy
metabolism. Clin Chem Lab Med 2006;44:1253–7.

15. Layla KN, Yeasmin S, Khan SA, Shaila KN, Azad AB, Ahmad R, et al. White
blood cell profile among different clinical stages of COVID-19 patients.
EJMED 2021;3:73–6.

16. Zhu N, Zhang D, WangW, Li X, Yang B, Song J, et al. A novel coronavirus
from patients with pneumonia in China, 2019. N Engl J Med 2020;382:
727–33.

17. Rabaan AA, Smajlović S, Tombuloglu H, Ćordić S, Hajdarević A, Kudić N,
et al. SARS-CoV-2 infection and multi-organ system damage: a review.
Bosn J Basic Med Sci 2022. https://doi.org/10.17305/bjbms.2022.7762.
[Internet] [cited 2024 Jun 28]; Available from: https://www.bjbms.org/
ojs/index.php/bjbms/article/view/7762.

18. Ortatatli M, Fatsa T, Mulazimoglu DD, Oren S, Artuk C, Hosbul T, et al.
Role of vitamin D, ACE2, and the proteases as TMPRSS2 and furin on
SARS-CoV-2 pathogenesis and COVID-19 severity. Arch Med Res 2023;
54:223–30.

19. Cheng SC, Scicluna BP, Arts RJW, Gresnigt MS, Lachmandas E,
Giamarellos-Bourboulis EJ, et al. Broad defects in the energy
metabolism of leukocytes underlie immunoparalysis in sepsis. Nat
Immunol 2016;17:406–13.

20. Japiassú AM, Santiago APSA, d’Avila J da CP, Garcia-Souza LF, Galina A,
Castro Faria-Neto HC, et al. Bioenergetic failure of human peripheral
blood monocytes in patients with septic shock is mediated by reduced
F1Fo adenosine-5’-triphosphate synthase activity. Crit Care Med 2011;
39:1056–63.

21. Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM. A review
of the mitochondrial and glycolytic metabolism in human platelets and
leukocytes: implications for their use as bioenergetic biomarkers.
Redox Biol 2014;2:206–10.

22. Merad M, Martin JC. Pathological inflammation in patients with
COVID-19: a key role for monocytes and macrophages. Nat Rev
Immunol 2020;20:355–62.

23. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19:
immunity, inflammation and intervention. Nat Rev Immunol 2020;20:
363–74.

24. Swenson KE, Hardin CC. Pathophysiology of hypoxemia in COVID-19
lung disease. Clin Chest Med 2023;44:239–48.

25. Gupta GS. The lactate and the lactate dehydrogenase in inflammatory
diseases and major risk factors in COVID-19 patients. Inflammation
2022;45:2091–123.

26. Ghosh K, Malik K, Das KC. Serum and leukocyte lactate dehydrogenase
activity in leukaemias. Haematologia 1988;21:227–32.

27. Shen T, Wang T. Metabolic reprogramming in COVID-19. Int J Mol Sci
2021;22:11475.

28. Melkonian EA, Schury MP. Biochemistry, anaerobic glycolysis. In:
StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. [Internet]
[cited 2024 Jun 28]. Available from: http://www.ncbi.nlm.nih.gov/
books/NBK546695/.

29. Peek CB, Levine DC, Cedernaes J, Taguchi A, Kobayashi Y, Tsai SJ, et al.
Circadian clock interaction with HIF1α mediates oxygenic
metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab
2017;25:86–92.

30. Ajaz S, McPhail MJ, Singh KK, Mujib S, Trovato FM, Napoli S, et al.
Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral
blood mononuclear cells of patients with COVID-19. Am J Physiol Cell
Physiol 2021;320:C57–65.

31. Swain O, Romano SK, Miryala R, Tsai J, Parikh V, Umanah GKE. SARS-
CoV-2 neuronal ınvasion and complications: potential mechanisms and
therapeutic approaches. J Neurosci 2021;41:5338–49.

32. Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites
control physiology and disease. Nat Commun 2020;11:102.

33. Agarwal S, Kaur S, Asuru TR, Joshi G, Shrimali NM, Singh A, et al. Dietary
alpha-ketoglutarate inhibits SARS CoV-2 infection and rescues inflamed
lungs to restore O2 saturation by inhibiting pAkt. Clin Transl Med 2022;
12:e1041.

34. Pérez-Hernández CA, Moreno-Altamirano MMB, López-Villegas EO,
Butkeviciute E, Ali M, Kronsteiner B, et al. Mitochondrial ultrastructure
and activity are differentially regulated by glycolysis-krebs cycle-and
microbiota-derived metabolites in monocytes. Biology (Basel) 2022;11:
1132.

35. Ceballos FC, Virseda-Berdices A, Resino S, Ryan P, Martínez-González O,
Peréz-García F, et al. Metabolic profiling at COVID-19 onset shows
disease severity and sex-specific dysregulation. Front Immunol 2022;
13:925558.

36. Angky S, Vincentius DS, Margaret GH, Margareth Ayuni TA, Vicky SA.
Hematologic parameters as predictor of COVID-19 severity. Jurnal
Widya Medika 2021;7:100–15.

37. Shi D, Yan R, Lv L, Jiang H, Lu Y, Sheng J, et al. The serummetabolome of
COVID-19 patients is distinctive and predictive. Metabolism 2021;118:
154739.

38. Quraishi E, Jibuaku C, Lisik D, Wennergren G, Lötvall J, Nyberg F, et al.
Comparison of clinician diagnosis of COVID-19 with real-time
polymerase chain reaction in an adult-representative population in
Sweden. Respir Res 2023;24:10.

Supplementary Material: This article contains supplementary material
(https://doi.org/10.1515/tjb-2024-0301).

402 Ortatatli et al.: Pasteur effect on COVID-19

https://doi.org/10.17305/bjbms.2022.7762
https://www.bjbms.org/ojs/index.php/bjbms/article/view/7762
https://www.bjbms.org/ojs/index.php/bjbms/article/view/7762
http://www.ncbi.nlm.nih.gov/books/NBK546695/
http://www.ncbi.nlm.nih.gov/books/NBK546695/
https://doi.org/10.1515/tjb-2024-0301

	Pasteur effect in leukocyte energy metabolism of patients with mild, moderate, and severe COVID-19
	Introduction
	Materials and methods
	Subjects
	Sample preparation for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis
	Analytical procedure
	Statistical analysis

	Results
	Discussion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


