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Abstract: This article offers a detailed analysis of the
Ising model in 2D small-world networks with competing
Glauber and Kawasaki dynamics. The non-equilibrium
stationary state phase transitions are obtained in these
networks. The phase transitions are discussed, and the
phase diagrams are obtained via Monte Carlo simulations
and finite-size analyzing. We find that as the addition of
links increases the phase transition temperature increases
and the transition competing probability of tricritical point
decreases. For the competition of the two dynamics, ferro-
magnetic to anti-ferromagnetic phase transitions and the
critical endpoints are found in the small-world networks.
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1 Introduction

The dynamical behavior of the Ising model was success-
fully described with the Glauber [1] and Kawasaki [2]
mechanisms. In the past decades, an interesting problem
has been attracting much attention, i.e., the competing
Glauber-type and Kawasaki-type dynamics, which leads
to non-equilibrium steady states [3—-6]. This competing
mechanism has been applied to the other spin models [7-
10] as well, and the emergence of the dynamical tricriti-
cal point and self-organization have been reported. The
authors found that, for the non-equilibrium models, the
universality class of the stationary critical behavior is the
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same as the equilibrium models [4, 6]. All of these works
were built on the regular square lattices.

In 1998, Watts and Strogatz proposed the small-world
networks (SWN) [11], which are believed to catch the
essence of many network systems in nature and society [12,
13]. SWNs are those intermediate between a regular lattice
and a random network. They can be realized by introduc-
ing a very small portion of long-range links to a regular lat-
tice. Such networks appear as small-worlds like random
graphs, i.e., with a short average node-node distance that
grows logarithmically with the network size. Meanwhile,
they also usually have large clustering coefficients.

After Watts and Strogatz’s work, bursting studies of
dynamical processes on SWNs appeared(see [12, 14] for
review).The critical phenomena in equilibrium and grow-
ing networks including the birth of the giant connected
component, percolation, k-core percolation, phenomena
near epidemic thresholds, condensation transitions, criti-
cal phenomena in spin models placed on networks, syn-
chronization, and self-organized criticality effects in in-
teracting systems on networks were investigated in recent
years [14]. Using Monte Carlo simulations, phase transi-
tions of the Ising model built on the SWNs were studied
by many authors [15-17], and the mean-field critical expo-
nents were found in 1 to 3 dimension SWNs.

Many authors obtained the exact solutions of the equi-
librium phase transitions in a Gaussian system with long
range interactions [18, 19]. Zhu and Zhu successfully in-
troduced the SWN effect to the critical dynamics of the
spin system. They obtained the analytical results of D-
dimensions Gaussian model and 1-dimension Ising model
built on the SWNs. In Zhu’s work [20], it has been found
that the SWN effect may have different types of influence
on the Glauber-type dynamics and the Kawasaki-type dy-
namics. By focusing on the competition of the dynamics,
it is easy for us to understand the significance of the SWN
effect further and highlight the disparities between the dy-
namics. We have generalized the competing dynamics of
the Gaussian model and 1D Ising model to the SWNs [21,
22]. By considering the mean field nature of the SWN effect,
we obtained the critical behaviors and the phase diagrams
analytically.
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The 1D Ising model built on SWNs does not show an-
tiferromagnetic phase at any temperature with any com-
peting probability. Moreover, we did not obtain the full
phase diagrams of the Gaussian model because of diver-
gence problems. As we assumed that the Hamiltonian of
the models have a mean-field nature, we obtained the sim-
ple phase diagrams of 1D Ising models in SWNs, in which
the critical temperature is constant in non-zero competing
probability.

As the mean-field Hamiltonian was used to obtain the
analytical results in our previous work, some detail of be-
haviors of the stationary state transitions were ignored. To
obtain more reliable results in this work, we use exten-
sive Monte Carlo simulations to study the non-equilibrium
phase transitions in the 2D SWNs. The ferromagnetic Ising
model built on the networks is discussed with the compet-
ing Glauber and Kawasaki dynamics. To make it easier to
follow, we first provide the involved theoretical formula-
tion and the simulation method in Sec. 2. By analyzing the
data, the phase transition behaviors and the diagrams are
discussed in Sec. 3 and Sec. 4 is the conclusions.

2 The model and simulation
method

2.1 Theoretical model

In this work, we study a specific network, in which every
site is additionally linked to a randomly selected one with
the probability p, on a 2 dimensional square lattice. To
make the simulation simpler, we restrict the coordination
number of each site lower than 5. If p, = 1, the coordina-
tion number equals 5. As the addition of long-range links
take a small portion of all the possible links, the network
stays in the small-world regime.

The ferromagnetic Hamiltonian of the Ising model
built on this networKk is as follows,

H= —Z]ijsisj’ M
ij

where Jj; is the coupling constant which equals J(J > 0) if
there is a link between the nodes i and j, and equals zero
if the nodes i and j are not connected.

Various dynamic processes in critical phenomena are
believed to be governed by two basic mechanisms, i.e., the
Glauber-type with order parameter non-conserved and the
Kawasaki-type with order parameter conserved. With the
competing dynamics, the master equation can be written
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as:

% - pG+(1-pK. @)

Here, pG denotes the Glauber mechanism with probabil-
ity p, and (1 - p)K denotes the Kawasaki mechanism with
probability 1 - p.

G=>_ [W(si— $)P({s},t)
i{s'})
-W(s; — s)P({s'}, )] ,

K=
irj.{s'}
—W(SiS; — sis))P{s'}, 0],

[W(SiS]' — §1§})P({S}; t)

where {s} and {s’} represent the spin configurations be-
fore and after the spin flipping or exchanging respec-
tively. G and K are determined respectively, by the Glauber-
type single-spin flip probability W;(s; — §;) and by the
Kawasaki-type pair-spin exchange probability W;;(s;s; —
§8)).

In their original form, the Glauber-type dynamics and
the Kawasaki-type dynamics both favor a lower energy
state. However, the competing dynamics are usually used
to describe a system in contact with a heat bath while ex-
posed to an external energy flux. Naturally one requires
competition between one process favoring lower system-
energy and the other one favoring higher system-energy.
Usually, the Glauber-type mechanism is used to simulate
the contact of the system with a heat bath and it prefers a
lower-energy state. On the other hand, the Kawasaki-type
mechanism can be modified to simulate an external energy
flux that drives the system towards a higher energy state.

2.2 Simulation method

We apply the standard Metropolis Monte Carlo method
to this model using a N x N square lattice with random
addition of long-range interactions, of which the addi-
tion mechanism is described in Sec 2.1. Let (k, 1) be a
node’s coordinate of the two-dimensional SWN. The pe-
riodic boundary conditions are used in all of our simula-
tions. For a given temperature T and a competing prob-
ability p, a randomly uniform number r; between zero
and unity is generated. If r; < p, the Glauber dynamics
are chosen. In this process, a randomly chosen spin sy,
may flip to —sy;. The flipping probability is dependent on
Wi (Ski — Sx1), which is given by

—AEu/KT ;
N e if AE; >0
Wia(s — 8x) = {

lf AEkl <0
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If r; > p, the Kawasaki dynamics is chosen. In this pro-
cess, arandomly chosen spin s; and its coupled spin s;/y,
which is also randomly chosen, may exchange. The ex-
changing probability is dependent on Wy i/ (SgiSprrr —
S1Sk1r), which is given by

0 if AEkl,k’l/ < 0
1 if AEkl,k’l/ > O

Wit kv (SaSkr = SuSier) = { (4)
Here, AE,; is the energy change resulting from flipping
spin sy, and AEy ;-1 is the energy change resulting form
exchanging the linked spins s;; and sy ..

Typically 2x10° MC steps per spin (MCS) are discarded
to reach the stationary state, and 2 x 10° MCS are retained
for the averages to obtain the bulk properties. We take 50
network samples for the average and 3 - 5 independent
computations with different initial configurations to ob-
tain the error bars. If error bars are not visible then they
are smaller than the size of the symbols.

The measured thermodynamic quantities in our simu-
lations are the magnetization per spin, the anti-ferro mag-
netization, the specific heat, the Binder cumulant and re-
duced fourth order energy cumulant:

mf=[<M>]=$[< > su >l )
Kkl
ma = (<M 3] = (< SED s 5], @)
kl
oy - LE B )
vo=1- L ®)
Vi=1- % ©)

[- - -] denotes the different network realizations taken over
50 configurations, and< - - - > denotes the thermal average
taken over 2 x 10° to 10° MCS. my and my give the fer-
romagnetic and anti-ferromagnetic order parameters re-
spectively. In Eq.(8), if m = mg, U, represents the Binder
cumulant of the ferromagnetic order parameter, while, if
m = my, U, represents the Binder cumulant of the anti-
ferromagnetic order parameter. Lattice sizes from N = 16
to N = 64 are simulated and the data are analyzed via the
finite-size scaling.

2.3 Finite-size scaling analysis

Although the original finite-size scaling was used to an-
alyze the equilibrium phase transitions [23], many re-

Non-equilibrium Phase Transitions in 2D Small-World Networks...

— 3

searchers [4, 6] still proposed that the bulk properties obey
the scaling relation near the stationary critical point:

cvr, = LYY cy(eL™), (10)

where a and v are critical exponents, and € = (T - T)/ T,
where T is the critical temperature. The exponent v can be
obtained via the derivative of the fourth order parameter
cumulant U, [24]:

dU4 _ 1/v -w
(m)max =aL""(1+bL™®).

where K7 is the inverse temperature with the definition
K7 = J/KT, and bL™" is a small correction term which is
not taken into account in this article.

If the phase transition is first order, the peak of the
specific heat scales proportional to L%, where d is the di-
mension of the system. Moreover, V, has a minimum at an
effective transition temperature which approaches the in-
finite lattice value as the inverse volume of the system [23].
If the phase transition is of the second order, for large
enough lattice size, the curves for the cumulate U, cross
as a function of temperature at a fix point value and the
location of the fixed point is the critical point.

1)

3 Results and discussion

The purpose of this work is to reveal the SWN effect
on non-equilibrium phase transitions. The order of the
phase transitions, the transition temperatures, and the
critical exponents are discussed in this part. In contrast
to Szolnoki’s work [6], in which they determined the crit-
ical points p. at fixed temperatures, we locate the transi-
tion points T, at fixed competing probabilities p instead.
We revisit the case of the regular 2D lattice. There exist
the anti-ferromagnetic(AF), paramagnetic(PM), and ferro-
magnetic(FM) in the phase diagrams of the regular lattice
systems.

We use the specific heat and the fourth order cumulant
of energy to distinguish the first and second phase tran-
sitions rather than use V, only. Typical data for the spe-
cific heat and the fourth order cumulant are shown in Fig-
ure 1. The specific heat peaks diverge with increasing lat-
tice sizes, following the relations: cjmax ~ N%. If p = 0.5,
we get « = 2, which implies that the system undergoes
a first order transition. @ = 0 (logarithm) when p = 0.7
which implies a second order phase transition. Both re-
sults are also confirmed by the curves of the fourth order
cumulant.

We simulate the cases of p = 0.1 to 0.9 and get the
tricritical point: Ty = 2.17 + 0.01 and p; = 0.67 + 0.01,
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Figure 1: The bulk properties as functions of temperature in regular
square lattice. a) specific heat and b) reduced fourth order energy
cumulantatp = 0.5, ¢) specific heat and b) Binder cumulant at
p=0.7

which agree well with the theoretical results of Szolnoki’s
work [6]. We estimate the exponent from finite-size behav-
ior of specific heat peaks, cmax ~ N%V. Near the tricritical
point, we get a/v = 1.59. It is clear that the stationary sec-
ond order transition has the same universality class as the
2D equilibrium Ising model.

We then introduce the random interactions to the sys-
tem, and the regular lattice becomes the SWN. Many re-
searchers suggested that the equilibrium critical behaviors
have the mean-field nature of such systems. While New-
man assumed that the effective dimension is higher than
regular lattices [25], and it is an interesting problem to ex-
plore how random interactions affect the non-equilibrium
stationary state transitions. So we simulate the cases of
pa = 0.1,0.5 and 1. Firstly, we study the FM to PM phase
transitions. Figure 2 gives the specific heat and the fourth
order cumulants of energy as a function of temperature at
the competing probability p = 0.5. Table 1 gives the phase
transition temperatures(Tf) obtained from Figure 2.

Table 1: Transition temperatures of FM to PM phases at p = 0.5 with
different link addition probability

Pa 0.1 0.5 1

Ty: 2.22

2.84 3.14

The simulations show that the transition tempera-
tures become higher as the link addition probability p,
increases. Moreover, the peak of the specific heat scales
proportional to L?, and V, has a minimum at the effective
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transition temperature. Both of these suggest that the sys-
tem undergoes a first order phase transition at p = 0.5.

If we increase the probability p, the order of the tran-
sition will change. The results of p = 0.9 are shown in Fig-
ure 3. It is obvious that the exponent a/v = 0 (logarithm),
which is the typical feature of the second phase transi-
tions. The locations of the crossing fixed point of U, are the
critical points. And the critical temperatures (T.) increase
as py increases. According to the scaling relation, the criti-
cal exponent v and the effective dimensions d,g satisfy the
formula vd.5 = 2 - a [26]. By analyzing the data of Uy, we
obtain the critical exponents 1/v = 1.02+0.01, 1.05+0.02
and 1.13 + 0.01, corresponding to p, = 0.1, 0.5, 1.0 re-
spectively. For v is smaller than 1, d.g is larger than 2.
The mean-field behavior (d gz > 4) does not appear on the
SWNs. The reason for this phenomenon is that we restrict
the number of extra links. Besides, we find that the effec-
tive dimensions increase as p, increases. Hence we spec-
ulated that the SWNs would show the mean-field nature
(1/v = 2 and d. = 4) if enough extra random links exist
in the networks.

The previous simulations indicate there should be a
tricritical point, which connects the first and second phase
transitions. To get this point, we simulate the cases of
p = 0.01 to 0.9 and estimate the exponent a/v via finite
size analyzing and locate the tricritical point (p¢, T¢). The
results of p, = 0.1,0.5, 1.0 are shown in Table 2. An-

Table 2: Tricritical points with different link addition probability

pa: 0.1 0.5 1
P 0.65 0.63 0.58
Ty: 2.46 3.02 3.24

other interesting phenomenon is how the random links af-
fect the self-organization under the competition between
the Glauber and Kawasaki processes. If the flux of en-
ergy (1 - p) is further increased, the Ising model on the
regular square lattice self-organizes into an antiferromag-
netic phase [6]. To locate the transition point of the anti-
ferromagnetic phase to other phases on the SWNs we use
the order parameters and the cumulants of the antiferro-
magnetic order parameter. The quantities as a function
of competing probabilities are simulated at different con-
stant temperatures.

The phase diagrams are shown in Figure 4. The data
plotted in the diagrams are quite different to the one of
the regular lattice. There are PM, AF and FM phases in
the figures. The more random links give rise to the higher
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Figure 2: The bulk properties as functions of temperature atp =

0.5. a) to ) specific heat of the SWNs with the adding probability

pa = 0.1,0.5, 1.0, respectively, d) to f) reduced fourth order energy cumulant of the SWNs with the adding probability p, = 0.1, 0.5, 1.0,

respectively

Figure 3: The bulk properties as functions of temperature at p = 0.9. a) to c) specific heat of the SWNs with the adding probability p4 =
0.1, 0.5, 1.0, respectively, d) to f) Binder cumulant of the SWNs with the adding probability p, = 0.1, 0.5, 1.0, respectively

transition temperatures of FM to PM. More ferromagnetic
coupling makes the system like a ferromagnetic state. The
higher temperature is needed to break the ferromagnetic
order. Compared to the regular lattice, the region of the
FM phase becomes larger, and especially at small p (large
energy flux), the systems undergo FM to AF transitions,
which does not exist in the regular lattice. The transition of
FM to AF is first order. As a result, the critical line of AF to
PM meets and is truncated by a first order transition line.
The truncated point should be the critical endpoint.

The diagrams reveal the fact that adding random links
breaks the AF order and leads to the appearance of the
FM phase even at considerable energy flux if the temper-
ature is low. However, the Kawasaki mechanism, which
prefers the high temperature, dominates the system when
p is small. Hence, when the temperature is high enough,
the system will self-organize to the AF phase again. How-
ever, the axis p = Ois aunique zone in the phase diagrams.
We cannot identify the system simply as FM or AF, because
in this case, it depends on the initial state. If m; # 0 and
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Figure 4: Phase diagrams of the SWNs with the adding probability p4

0.1, 0.5, 1.0, respectively. The boundary of the first order tran-

sitions are shown by dashed lines and open circles, and the second order transitions are shown by solid lines and closed diamonds. The

solid squares represent the tricritical points

my = O at the initial state, the system will stay in a FM
state; otherwise, the system will be AF.

The tricritical points are found in the diagrams, and
this was not reported in the analytical work of 1D net-
works [22]. If the energy flux is large enough, the transi-
tion from FM to PM is the first order; otherwise, the transi-
tion is the second order. When the energy flux is small, the
Glauber mechanism dominates the system. Consequently,
critical phenomena exist in these systems. However, if the
energy flux is not sufficiently small, the Glauber and the
Kawasaki mechanism competitively govern the system.
There is no spontaneous symmetry breaking, so the tran-
sition should be the first order. The transition probability
p: of tricritical points decreases if the adding probability
pa increases. This means that the region of the sponta-
neous symmetry breaking becomes larger because of the
extra random FM coupling.

4 Conclusions

Using extensive MC simulations, we have studied the non-
equilibrium phase transitions in 2D SWNs governed by the
competing Glauber and Kawasaki mechanism. The Ising
model is used, and the phase diagrams are obtained. We
find that adding random interactions leads to four effects.
First, they make ferro- to paramagnetic phase transition
temperatures increase, which is the same effect as the
equilibrium transitions in SWNs. Second, the tricritical
competing probability p; decreases as the p, increases.
Third, the self-organizing behavior is restrained because
of the randomness, and the AF to FM phase transition ap-
pears in the networks. Finally, the critical endpoints exist
in the phase diagrams. Via finite size analyzing, we obtain
the critical exponent 1/v > 1, which implies that the effect
dimension is larger than 2. Our results further indicate that

the method for analyzing equilibrium phase transitions
could be used to analyze studies of the non-equilibrium
stationary transitions. We believe that the method can be
applied to many real systems in nature and society.
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