Home Physical Sciences The crystal structure of bis{3-(diphenylphosphaneyl)propanoato-κ2O,P}platinum(II) dihydrate, C30H28O6P2Pt
Article Open Access

The crystal structure of bis{3-(diphenylphosphaneyl)propanoato-κ2O,P}platinum(II) dihydrate, C30H28O6P2Pt

  • Pamela Moyo , Leah Matsinha and C.E. Makhubela Banothile ORCID logo EMAIL logo
Published/Copyright: May 12, 2020

Abstract

C30H28O6P2Pt, monoclinic, C2/c (no. 15), a = 16.911(3) Å, b = 9.516(2) Å, c = 16.790(3) Å, β = 100.830(4)°, V = 2653.8(9) Å3, Z = 4, Rgt(F) = 0.0126, wRref(F2) = 0.0310, T = 293 K.

CCDC no.: 1984887

The complex title structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Brown needle
Size:0.30 × 0.20 × 0.20 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:5.45 mm−1
Diffractometer, scan mode:Bruker APEX-II, ω
θmax, completeness:26.3°, >99%
N(hkl)measured, N(hkl)unique, Rint:18368, 2675, 0.021
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2653
N(param)refined:183
Programs:Bruker [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.44711(12)0.5225(2)0.63025(11)0.0133(4)
C20.37156(12)0.4801(2)0.58769(12)0.0155(4)
H20.36282(12)0.3851(2)0.57082(12)0.0186(5)*
C30.30961(12)0.5772(2)0.57029(13)0.0184(4)
H30.25859(12)0.5490(2)0.54067(13)0.0220(5)*
C40.32192(13)0.7156(2)0.59605(13)0.0185(4)
H40.27880(13)0.7811(2)0.58555(13)0.0222(5)*
C50.39700(13)0.7584(2)0.63702(13)0.0173(4)
H50.40539(13)0.8534(2)0.65395(13)0.0208(5)*
C60.46002(12)0.6626(2)0.65337(12)0.0147(4)
H60.51178(12)0.6925(2)0.68026(12)0.0176(5)*
C70.62125(12)0.4721(2)0.68086(12)0.0146(4)
C80.64127(12)0.5775(2)0.62994(13)0.0177(4)
H80.60066(12)0.6188(2)0.59002(13)0.0212(5)*
C90.72043(13)0.6213(2)0.63794(14)0.0205(4)
H90.73415(13)0.6930(2)0.60361(14)0.0246(5)*
C110.76032(12)0.4574(2)0.74725(13)0.0200(4)
H110.80102(12)0.4170(2)0.78744(13)0.0240(5)*
C120.68106(12)0.4134(2)0.73956(12)0.0164(4)
H120.66757(12)0.3426(2)0.77462(12)0.0196(5)*
C130.52914(13)0.2961(2)0.56534(12)0.0167(4)
H13a0.47483(13)0.2624(2)0.54003(12)0.0201(5)*
H13b0.54777(13)0.3617(2)0.52699(12)0.0201(5)*
C150.55317(12)0.0447(2)0.61826(12)0.0146(4)
C160.77982(13)0.5604(2)0.69612(14)0.0209(4)
H160.83419(13)0.5898(2)0.70084(14)0.0251(5)*
C170.58688(12)0.1706(2)0.58063(13)0.0171(4)
H17a0.60102(12)0.1416(2)0.52844(13)0.0205(5)*
H17b0.63708(12)0.2010(2)0.61684(13)0.0205(5)*
O10.51177(9)0.06433(15)0.67441(9)0.0182(3)
O20.56517(9)−0.07417(16)0.59461(9)0.0217(3)
O30.64613(11)−0.1206(2)0.47227(12)0.0365(4)
H3a0.6097(17)−0.088(4)0.4284(14)0.0548(6)*
H3b0.6201(18)−0.098(4)0.5148(14)0.0548(6)*
P10.52316(3)0.38910(5)0.65876(3)0.01164(10)
Pt10.50.232461(10)0.750.01130(4)

Source of material

Treatment of 4-formyl-3-hydroxybenzoic acid (0.401 g, 2.41 mmol) with one equivalent of 4-amino-3-hydroxybenzoic acid (0.396 g, 2.41 mmol) in ethanol yielded a mixture, which was refluxed for 10 h. This procedure resulted in the formation of (E)-4-(4-carboxy-2-hydroxybenzylidene)amino-3-hydroxybenzoic acid [3]. This educt (0.100 g, 0.332 mmol) was further treated with (0.115 g, 0.166 mmol) [PtCl2(C15H15O2P)2] salt precursor to isolate a tridentate O–N–O Pt(II) Schiff base complex for 24 h as an orange solid in good yield (75%). Upon growing crystals of this complex, ligand substitution of the imine resulted in a second mole of the propionic acid ligand coordinating to the metal. This resulted in simultaneous deprotonation of the propionic acid resulting in a bis coordination fashion.

Brown crystals suitable for single X-ray diffraction were obtained by slow evaporation from dimethylsulfoxide and methanol from a solution of the complex for 3 weeks at room temperature.

Experimental details

Crystal data was collected on a Bruker APEXII diffractometer with detector to crystal distance of 4.00 cm. The initial cell matrix was obtained from three series at different starting angles. Each series consisted of 12 frames collected at intervals of 0.5° in approximately a 6° range with an exposure time of 10 s per frame. Structure solution was achieved by direct methods (program SHELX) within the XSEED interface and all non-hydrogen atoms from F-map. All hydrogen atoms were included at idealized positions and were allowed to ride on the parent atoms with relative isotropic displacement coefficients.

Comment

Phosphine ligands have a general formula PR3 (where R = alkyl, halide, aryl, hydrogen etc.) [4]. These ligands play an important role in stabilizing many transition metal catalysts and can activate the metal centre while also assist in fine-tuning the selectivity of products in catalytic transformations. This is done by modifying the steric and electronic environment around the phosphine by simply varying the substituents on the phosphorus atom [5], [6]. These ligands are well known for their versatility to perform various applications [7], [8]. Phosphine ligands can be coordinated to various transition metals (Pt, Pd, Rh, Ru etc.) for various applications such as hydroformylation, hydrogenation, Mizoroki-Heck and Suzuki cross-coupling reactions [9], [10], [11], [12], [13]. Our interests in phosphine ligands includes application of platinum complexes in catalytic as well as biological studies. Trettenbrein and co-workers reported the synthesis of an electron rich, highly stable new phosphanyl-carboxylate ligand and its coordination to Pt(II). These organometallic compounds with functionalised phosphanes have revealed a great in homogenous catalysis [14]. However, the synthesis procedure of this Pt-based phosphanyl-carboxylate ligand involves several steps. Our work, reports the synthesis and characterisation of bis(3-diphenylphosphinopropanoate)platinum(II), following a single-step process under ambient conditions. Single crystal X-ray diffraction showed that the title structure is best described in the space group C2/c. The central Pt(II) has a square planar coordination geometry which is found in d8 complexes reported in the literature [15], [16]. The crystal structure shows coordination of Pt metal to two oxygen atoms and two phosphorus atoms in a bis fashion with a pendant carboxylate group forming the oxygen donor ligands. The connectivity in the title compound together with the bond lengths and bond angles are in expected ranges. The Pt—O and Pt—P bond lengths are 2.0744 Å and 2.2242 Å, respectively which is similar to what has been reported in literature [17], [18], [19], [20].

Acknowledgements

This work was supported by the South African National Research Foundation (Grant Numbers: 117989), UJ Centre for Synthesis and Catalysis and SASOL (under the Sasol University Collaboration Programme).

References

1. Bruker. ApexII. Bruker Axs Inc., Madison, WI, USA (2009).Search in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

3. Sathyadevi, P.; Krishnamoorthy, P.; Butorac, R. R.; Cowley, A. H.; Bhuvanesh, N. S. P.; Dharmaraj, N.: Effect of substitution and planarity of the ligand on dna/bsa interaction, free radical scavenging and cytotoxicity of diamagnetic Ni(II) complexes: a systematic investigation. Dalton Trans. 40 (2011) 9690–9702.10.1039/c1dt10767dSearch in Google Scholar PubMed

4. Gharamaleki, J. A.; Akbari, F.; Karbalaei, A.; Ghiassi, K. B.; Olmstead, M. M.: Synthesis, characterization and crystal structure of a new schiff base ligand from a bis (thiazoline) template and hydrolytic cleavage of the imine bond induced by a Co(II) cation. Open J. Inorg. Chem. 6 (2016) 76–88.10.4236/ojic.2016.61005Search in Google Scholar

5. Twigg, M. V.: Vol. 6: Substitution reactions of inert-metal complexes. In Mechanisms of inorganic and organometallic reaction. (Ed. M. V. Twigg), Springer, Boston (1989), pp. 129–151.10.1007/978-1-4613-0827-0_5Search in Google Scholar

6. Mazuela, J.; Norrby, P. O.; Andersson, P. G.; Pàmies, O.; Diéguez, M.: Pyranoside phosphite–oxazoline ligands for the highly versatile and enantioselective Ir-catalyzed hydrogenation of minimally functionalized olefins. a combined theoretical and experimental study. J. Am. Chem. Soc. 133 (2011) 13634–13645.10.1021/ja204948kSearch in Google Scholar PubMed

7. Cadierno, V.; Crochet, P.; Díez, J.; García-Álvarez, J.; García-Garrido, S. E.; Gimeno, J.; García-Granda, S.; Rodríguez, M. A.: Ruthenium(II) and ruthenium(IV) complexes containing κ1-P-, κ2-P,O-, and κ3-P,N,O-iminophosphorane-phosphine ligands Ph2PCH2P{NP(O)(OR)2}Ph2 (R = Et, Ph): synthesis, reactivity, theoretical studies, and catalytic activity in transfer hydrogenation of cyclohexanone. Inorg. Chem. 42 (2003) 3293–3307.10.1021/ic020702kSearch in Google Scholar PubMed

8. Fernńdez-Pérez, H.; Etayo, P.; Panossian, A.; Vidal-Ferran, A.: Phosphine–phosphinite and phosphine–phosphite ligands: preparation and applications in asymmetric catalysis. Chem. Rev. 111 (2011) 2119–2176.10.1021/cr100244eSearch in Google Scholar PubMed

9. Matsinha, L. C.; Siangwata, S.; Makhubela, B. C. E.; Smith, G. S.: Aqueous biphasic hydroformylation of olefins: from classical phosphine-containing systems to emerging strategies based on water-soluble nonphosphine ligands. Cat. Rev. Sci. Eng. 61 (2019) 111–133.10.1080/01614940.2018.1541781Search in Google Scholar

10. Govender, P.; Renfrew, A. K.; Clavel, C. M.; Dyson, P. J.; Smith, G. S.: Phosphorus dendrimers functionalised with nitrogen ligands, for catalysis and biology. Dalton Trans. 40 (2011) 1158–1167.10.1039/C0DT00761GSearch in Google Scholar PubMed

11. Amenuvor, G.; Makhubela, B. C. E.; Dhakwa, J.: Homogenous polymetallic ruthenium(II) zinc(II) complexes: robust catalysts for the efficient hydrogenation of levullinic acid to γ-valerolactone. Catal. Sci. Technol. 8 (2018) 2370–2380.10.1039/C8CY00265GSearch in Google Scholar

12. Liu, Y.; Zhao, J.; Liu, H.; Fu, H.; Zheng, X.; Yuan, M.; Li, R.; Chen, H.: Homogeneous hydroformylation of long chain alkenes catalyzed by water phosphine rhodium complex in methanol and efficient catalyst cycling. RSC Adv. 9 (2019) 7382–7387.10.1039/C8RA08787CSearch in Google Scholar

13. Stringer, T.; Hendricks, D. T.; Guzgay, H.; Smith, G. S.: Synthesis and characterization of multimeric salicylaldimine thiosemicarbazones and their Pd(II) and Pt(II) complexes. Polyhedron 31 (2012) 486–493.10.1016/j.poly.2011.10.005Search in Google Scholar

14. Maulana, I.; Peter, L.; Hey-Hawkins, E.: Synthesis and reactivity of ortho-carbaborane-containing chiral aminohalophosphines. Inorg. Chem. 11 (2009) 8638–8645.10.1021/ic9011907Search in Google Scholar PubMed

15. Alsalahi, W.; Trzeciak, A. M.: Hydroformylation of unsaturated esters and 2,3-dihydrofuran under solventless conditions at room temperature catalysed by rhodium N-pyrrolyl phosphine catalysts. New J. Chem. 43 (2019) 16990–16999.10.1039/C9NJ04438HSearch in Google Scholar

16. Trettenbrein, B.; Fessler, M.; Ruggenthaler, M.; Haringer, S.; Oberhuber, D.; Czermak, G.; Brüggeller, P.; Oberhauser, W.: First microwave-assisted synthesis of an electron-rich phosphane and its coordination chemistry with platinum(II) and palladium(II). Inorg. Chim. Acta 375 (2011) 324–328.10.1016/j.ica.2011.05.020Search in Google Scholar PubMed PubMed Central

17. Kořenková, M.; Hejda, M.; Štěpnička, P.; Uhlík, F.; Jambor, R.; Růžička, A.; Dost’al, L.: Synthesis and non-conventional structure of square-planar Pd(II) and Pt(II) complexes with an N,C,N-chelated stibinidene ligand. Dalton Trans. 47 (2018) 5812–5822.10.1039/C8DT00714DSearch in Google Scholar

18. Chiririwa, H.; Moss, J. R.; Hendricks, D.; Smith, G. S.; Meijboom, R.: Synthesis, characterisation and in vitro evaluation of platinum(II) and gold(I) iminophosphine complexes for anticancer activity. Polyhedron 49 (2013) 29–35.10.1016/j.poly.2012.09.053Search in Google Scholar

19. Maulana, I.; Lonnecke, P.; Hey-Hawkins, E.: Platinum(II) and palladium(II) complexes of chiral P-Cl functionalized bis-phosphino ortho-carbaboranes. Inorg. Chem. 48 (2009) 8638–8645.10.1021/ic9011907Search in Google Scholar

20. Xu, X.; Kua, J.; Periana, R. A.; Goddard, W. A.: Structure, bonding, and stability of a catalytical platinum(II) catalyst: a computational study. Organometallics 22 (2003) 2057–2068.10.1021/om0202165Search in Google Scholar

Received: 2020-03-31
Accepted: 2020-04-30
Published Online: 2020-05-12
Published in Print: 2020-08-26

©2020 Pamela Moyo et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. Crystal structure of isopimara-7,15-dien-3-one, C20H30O
  3. Crystal structure of bis(6-aminopyridine-2-carboxylato-κ2O,N)-copper(II), C12H10O6N4Cu
  4. Crystal structure of 5,6-diphenyldibenzo[c, g]chrysene, C38H24
  5. Poly[bis(dimethylformamide-κO)-(μ8-5,5′′-dicarboxy-[1,1′:4′,1′′-terphenyl]-2′,3,3′′,5′-tetracarboxylato-κ8O:O1:O2:O3:O4:O5:O6:O7)dizinc(II)] — dimethylformamide (1/2), C18H19N2O8Zn
  6. The crystal structure of poly[bis(N,N-dimethylformamide-κ1O)(μ4- 2′,5,5′,5′′-tetracarboxy-[1,1′:4′,1′′-terphenyl]-3,3′′-dicarboxylato-κ4O:O′:O′′:O′′′)manganese(II)] — N,N-dimethylformamide (1/2), C36H40N4O16Mn
  7. Crystal structure of N,N-dimethyl-4-((7-nitrobenzo[c][1,2,5]thiadiazol-4-yl)ethynyl)aniline, C16H12N4O2S
  8. The crystal structure of 8a-methoxy 8a-methoxy-1,5,8a,9a-tetrahydro-4H-8,9-dioxa-3a1λ4-aza-8aλ4, C18H14BNO3
  9. Crystal structure of poly[diaqua-(μ2-5-isopropoxyisophthalato-κ2O:O′)-(μ2-(1,3-bis(3,5-di(1H-imidazol-1-yl)pyridine))-κ2N:N′)cobalt(II)] monohydrate, C22H25N5O8Co
  10. The crystal structure of acetoximium 1′-hydroxy-1H,1H′-5,5′-bitetrazole-1-olate monohydrate, C5H11N9O4
  11. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-vinyl-1H-imidazol-3-ium hexafluoridophosphate(V), C9H13F6N2O2P
  12. The crystal structure of catena-poly[(μ2-4-(benzo[d]imidazol-2-yl)benzenecarboxylato-κ2N,O)-(μ2-4-(benzo[d]imidazol-2-yl)benzenecarboxylato-κ3N,O:O′)cadmium(II)]dihydrate, C28H22CdN4O6
  13. Enzyme-mediated synthesis and crystal structure of (2R,4S)-hydroxyketamine, C13H16ClNO2
  14. The crystal structure of bis(isothiocyanato-κ1N)-(methanol-κ1O)-[2-morpholine-4-yl-4,6-di(pyrazol-1-yl)-1,3,5-triazine-κ3N,N′,N′′] manganese(II), C16H18MnN10O2S2
  15. Crystal structure of bis{5-chloro-2-(((4-trifluoromethyl)imino)methyl)phenolato-κ2N,O}copper(II), C28H16Cl2CuF6N2O2
  16. Crystal structure of bis(1,3-phenylenedimethanaminium) bis(triiodide) tetraiodide – water (1/2) , C8H16I5N2O
  17. Crystal structure and anti-inflammatory activity of (3E,5E)-3,5-bis(2-fluorobenzylidene)-1-((4-fluorophenyl)sulfonyl)piperidin-4-one, C25H18F3NO3S
  18. The crystal structure of bis{3-(diphenylphosphaneyl)propanoato-κ2O,P}platinum(II) dihydrate, C30H28O6P2Pt
  19. The crystal structure of (E)-2-(4-((4-fluorobenzyl)oxy)styryl)-4,6-dimethoxybenzaldehyde, C24H21FO4
  20. Crystal structure of bis[3-methoxy-N-(1-(pyrazin-2-yl)ethylidene)benzohydrazonato-κ3O,N,N′]nickel(II), C28H26N8O4Ni
  21. Crystal structure of 1-(2-(pyridin-2-yl)-5-(pyridin-3-yl)-1,3,4-oxadiazol-3(2H)-yl)ethan-1-one, C14H12N4O2
  22. Synthesis and crystal structure of 3-N-acetyl-5-(pyridin-3-yl)-2-(quinolin-2-yl)-1,3,4-oxadiazoline, C18H14N4O2
  23. Crystal structure of 2-methyl-1H-perimidine, C12H10N2
  24. Crystal structure of (E)-2-(5,5-dimethyl-3-(4-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)oxy)styryl)cyclohex-2-en-1-ylidene)malononitrile, C25H19N5O4
  25. Structural elucidation of 1-(3-acetyl-2,6-dihydroxy-4-methoxyphenyl)-4,5-dihydroxy-2-methylanthracene-9,10-dione isolated from Bulbine latifolia (L.) Wild, C24H18O8
  26. Crystal structure of 3-cinnamoyl-4-hydroxybenzoic acid, C16H12O4
  27. The crystal structure of poly[bis(μ4-2,3-pyridinedicarboxylato)-(μ2-oxalyl dihydrazide)-dicadmium(II) dihydrate], C16H16O12N6Cd2
  28. Synthesis and crystal structure of 1-{4-[(3-bromo-2-hydroxy-benzylidene)amino]phenyl}ethanone, C15H12BrNO2
  29. Synthesis and crystal structure of 1-{4-[(2-bromo-6-hydroxy-benzylidene)amino]phenyl}ethanone, C15H12BrNO2
  30. Crystal structure of (4-aminobenzoato-κ2O,O′)-[5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′]nickel(II) perchlorate monohydrate, C23H44ClN5NiO7
  31. Crystal structure of 1-{4-[(4-fluoro-2-hydroxy-benzylidene)amino]phenyl}ethanone, C15H12FNO2
  32. Preparation and crystal structure of a non-symmetrical vanadium(II) dimer: tri-μ2-bromido-(hydrogen-tris(3-isopropyl-4-bromopyrazol-1-yl)borato-κ3N,N′,N′′)-tris(tetrahydrofuran-κO)divanadium(II) – tetrahydrofuran (1/1), C34H57BBr6N6O4V2
  33. Crystal structure of bis{2-(((4-(1-(hydroxyl-imino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}cobalt(II), C30H26CoN4O4
  34. Crystal structure of 3-((3-nitrophenyl)sulfonamido)propanoic acid — 4,4′-bipyridine (1/1), C19H18N4O6S
  35. Crystal structure of cyclo[diaqua-bis(μ2-3′,5-dicarboxy-[1,1′-biphenyl]-3,4′-dicarboxylato-κ4O,O′:O′′,O′′′)-bis(4,4′-bis(pyrid-4-yl)biphenyl-K1N)dicadmium(II)], C76H52Cd2N4O18
  36. Crystal structure of 1-(adamantan-1-yl)-3-aminothiourea, C11H19N3S
  37. Crystal structure of catena-poly[triaqua-(μ2-1,4-di(pyridin-4-yl)benzene-κ2N:N′)-(3′,5-dicarboxy-[1,1′-biphenyl]-3,4′-dicarboxylato-κO)nickel(II)], C32H26N2O11Ni
  38. Crystal structure of catena-poly[aqua-(μ4-4,4′-(pyridine-3,5-diyl)dibenzoato-κ4O,O′:O′′:O′′′)zinc(II)], C19H13NO5Zn
  39. Crystal structure of 4-(4′-(pyridin-4-yl)-[1,1′-biphenyl]-4-yl)pyridin-1-ium 2-carboxy-4-(3,5-dicarboxyphenoxy)benzoate hydrate, C38H28N2O10
  40. Crystal structure of 3-[(triisopropylsilanyl)-ethynyl]-6a,12a-dihydro-1H-1,4-diaza-benzo[α]anthracene-2,7,12-trione, C27H28N2O3Si
  41. Crystal structure of [(bis(1,10-phenanthroline-κ2N,N′)-(2-carboxy-4-(3-carboxy-5-carboxylatophenoxy)benzoato-κ2O:O′))nickel(II) monohydrate, (1,10-phenanthroline-κ2N:N′)-(μ2-(5-(3′,4′-dicarboxylphenoxy)-isophthalate-κ2O:O′))nickel(II)], C40H24N4O9Ni ⋅ H2O
  42. Crystal structure of 4-(3-(pyridin-3-yl)ureido)benzoic acid — adipic acid (2/1), C16H16N3O5
  43. Crystal structure of poly[bis{μ2-5-carboxy-4′-methyl-[1,1′-biphenyl]-3-carboxylato-κ2O:O′}-{μ2-4,4′-bipyridine-κ2N:N′}]cobalt(II), C40H30N2O8Co
  44. Crystal structure of aqua-(2,2′-bipyridine-κ2N,N′)(((3-nitrophenyl)sulfonyl)glycine-κ2N,O)copper(II) dihydrate, C18H20CuN4O9S
  45. Crystal structure of bis{2-bromo-6-(((4-(1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}copper(II), C32H28Br2CuN4O4
  46. Crystal structure of bis(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)zinc(II), C40H28Cl4N4O4Zn
  47. Crystal structure of 2-(3,6-dimethyl-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)-2-oxoethyl acetate, C14H17NO4
  48. Crystal structure of poly[dibromido-bis(μ2-1,6-di(1H-imidazol-1-yl)hexane-κ2N:N′)cadmium(II)], C24H36Br2N8Cd
  49. Synthesis and crystal structure of ((6R,7S)-3-ethyl-6-phenyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanone hemihydrate, 2(C19H18N4OS) ⋅ H2O
  50. Crystal structure of 2-(5-(pyridin-3-yl)-4-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)pyridine, C17H12N6
  51. The crystal structure of N-((1E,2E)-1,3-bis(4-fluorophenyl)but-2-en-1-ylidene)-4-methylbenzenesulfonamide, C23H19F2NO2S
  52. Crystal structure of diacetato-κ1O-diethanol-κ1O-bis(μ2-2-(((2-hydroxyethyl)imino)methyl)-5-methoxyphenolato-κ4O,N,O′:O′′)dinickel(II), C28H42Ni2N2O12
  53. The crystal structure of catena-poly[chlorido-(μ2-1,4-bis(pyridin-3-yl-methoxy)benzene-κ2N:N′)copper(II)], C18H16ClN2O2Cu
  54. N′,N′′′-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methaneylylidene))bis(2-hydroxybenzohydrazide)nickel(II), C30H24N4NiO6
  55. Crystal structure of (E)-3′,6′-bis(ethylamino)-2′,7′-dimethyl-2-(2-((quinolin-2-ylmethylene)amino)ethyl)spiro[isoindoline-1,9′-xanthen]-3-one, C38H37N5O2
  56. Crystal structure of 4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl-1-ium 5,3′,5′-tricarboxy-[1,10-biphenyl]-2-carboxylate, C25H17N2O8
  57. The crystal structure of 1-carboxy-2-(1H-indol-3-yl)-N,N,N-trimethylethan-1-ammonium chloride, C14H19N2O2Cl
  58. The crystal structure of 5-bromo-2-fluoronicotinic acid monohydrate, C6H5BrFNO3
  59. Crystal structure of ethyl 3-(trifluoromethyl)-1H-pyrazole-4-carboxylate, C7H7F3N2O2
  60. Crystal structure of tetrakis(1H-benzo[d]imidazol-3-ium) bis(μ5-phenylphosphonato)-pentakis(μ2-oxido)-decaoxo-penta-molybdenum dihydrate, C40H42Mo5N8O23P2
  61. Structure of 7-(3,3,4,4,5,5-hexafluoro-2-(2-methylbenzo[b]thiophen-3-yl)cyclopent-1-en-1-yl)-8-methylquinoline, C24H15F6NS
  62. Crystal structure of monocarbonyl[2-((cyclopentylmethylene)amino)-5-methylphenolato-κ2N,O] (tricyclohexylphosphine)rhodium(I), C32H48NO2PRh
  63. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(pyrazole-κN)rhenium(I)nitrate, C18H12O3N4Re
  64. Crystal structure of poly[diaqua-bis(μ2-4-(3-(pyridin-3-yl)-1H-1,2,4-triazol-5-yl)benzoato-κ2N:O)nickel(II)], C28H22O6N8Ni
  65. Crystal structure of 4,4′-bis(pyridin-1-ium-4-yl)biphenyl poly[bis(μ2-4,4′-bis(pyrid-4-yl)biphenyl-K2N:N′)-tetrakis(μ4-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-K4O,O′:O′′:O′′′)-bis[[μ2-1,1′-biphenyl]-3-carboxyl-5-carboxylato-K2O:O′]tetracobalt(II)]— [1,1′-biphenyl]-3,5-dicarboxylic acid (1/2), C93H68N3O16Co2
  66. The crystal structure of 4a-formyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydro-1-2-6a,6b,9,9,12a-heptamethylpicen-10-yl acetate, C32H50O3
  67. Crystal structure of 3,3′-(1,2-phenylenebis(methylene))bis(1-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C16H20F12N4P2
  68. Crystal structure of catena-poly[diaqua-(μ2-tartrato-κ4O,O′:O′′,O′′′)zinc(II)], C4H8O8Zn
  69. The crystal structure of (6aR,6bS,8aS,8bR,9S,11aS,12aS,12bS)-10-(4-acetoxy-3-methylbutyl)-6a,8a,9-trimethyl-3,4,5,6,6a,6b,7,8,8a,8b,9,10,11a,12,12a,12b-hexadecahydro-1H-naphtho[2′,1′:4,5]indeno[2,1-b]furan-4-yl acetate, C31H48O5
  70. Crystal structure of 4,4′-(oxybis(methylene))bis(bromobenzene), C14H12Br2O
  71. Crystal structure of (N,N-dimethylsulphoxide)-[N-(3-ethoxy-2-(oxide)benzylidene)-3-methoxybenzenecarbohydrazonato-κ3N,O,O′]-dioxo-molybdenum(VI), C19H22MoN2O7S
  72. Crystal structure of dichlorido-bis(dimethyl sulphoxide-κO)-bis(4-methylbenzyl-κC1)tin(IV), C20H30Cl2O2S2Sn
  73. Crystal structure of (E)-2-amino-N′-(2-hydroxy-4-(2-(piperidin-1-yl)ethoxy)benzylidene)benzohydrazide monohydrate, C21H26N4O3 ⋅ H2O
  74. Crystal structure of chloridotris(4-chlorophenyl)(dimethyl sulfoxide-κO)tin(IV), C20H18Cl4OSSn
  75. Crystal structure of catena{di-aqua-sodium-[N-(hydroxyethyl), N-isopropyl-dithiocarbamato]}n, [C6H16NNaO2S2]n
  76. Crystal structure of 2,2,4,4,6,6-hexakis(4-chlorophenyl)-1,3,5,2,4,6-trithiatristanninane, C36H24Cl6S3Sn3
  77. Crystal structure of 6-methoxy-3-(5-(3-methoxyphenyl)-1,3,4-oxadiazol-2-yl)-4H-chromen-4-one-methanol (1/1), C20H18N2O6
  78. Crystal structure of hexanedihydrazide, C6H14N4O2
  79. Crystal structure of tert-butyl 2-(hydroxymethyl)-5-{4-[(methoxycarbonyl)amino]phenyl}-2,5-dihydro-1H-pyrrole-1-carboxylate, C18H24N2O5
  80. Crystal structure of [(Z)-O-isopropyl N-(4-nitrophenyl)thiocarbamato-κS]-(triphenylphosphine-κP)-gold(I), C28H26AuN2O3PS
  81. Crystal structure of [O-ethyl N-(4-nitrophenyl)thiocarbamato-κS](tri-4-tolylphosphine-κP)gold(I) tetrahydrofuran solvate, C30H30AuN2O3PS, C4H8O
Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0167/html
Scroll to top button