Home Crystal structure of bis(1,3-phenylenedimethanaminium) bis(triiodide) tetraiodide – water (1/2) , C8H16I5N2O
Article Open Access

Crystal structure of bis(1,3-phenylenedimethanaminium) bis(triiodide) tetraiodide – water (1/2) , C8H16I5N2O

  • Guido J. Reiss EMAIL logo
Published/Copyright: May 11, 2020

Abstract

C8H16I5N2O, monoclinic, C2/c (no. 15), a = 34.180(5) Å, b = 7.6817(3) Å, c = 21.421(3) Å, β = 137.93(3)°, Z = 8, V = 3768.7(16) Å3, Rgt(F) = 0.0364, wRref = 0.0737, T = 290(2) K.

CCDC no.: 1998666

Tables 1 and 2 contain details on the crystal structure as well as measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Black needle
Size:0.74 × 0.12 × 0.05 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:8.24 mm−1
Diffractometer, scan mode:Xcalibur, ω
θmax, completeness:27.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:28854, 4097, 0.049
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3041
N(param)refined:163
Programs:Diamond [1], CrysAlisPRO [2], SHELX [3-5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
I10.21921(2)1.13733(6)0.06168(3)0.07461(15)
I20.29324(2)1.12572(5)0.25844(3)0.05662(13)
I30.37046(2)1.11908(6)0.46076(3)0.07017(15)
I40.40481(2)0.73934(5)0.71186(3)0.06867(15)
I5a0.46031(3)0.37809(11)0.72498(5)0.0647(2)
I6a0.51914(3)0.08474(11)0.75254(5)0.0660(2)
O1W0.31628(19)0.8923(6)0.0587(3)0.0695(12)
H1W0.326(3)0.997(4)0.085(5)0.120*
H2W0.338(3)0.833(9)0.057(5)0.120*
N10.4382(2)0.7048(8)0.5775(4)0.0798(16)
H110.4063450.7668000.5312050.120*
H120.4691120.7747590.6151100.120*
H130.4339710.6533270.6094790.120*
C10.4464(3)0.5735(8)0.5395(4)0.088(2)
H1A0.4216760.4741570.5192860.105*
H1B0.4866550.5343200.5877970.105*
N20.3013(2)0.5969(6)0.1279(3)0.0649(14)
H210.3260150.5097140.1500980.120*
H220.3119590.6892720.1182410.120*
H230.2654010.5646630.0744340.120*
C20.4317(3)0.6433(7)0.4570(4)0.0573(15)
C30.4708(2)0.7451(8)0.4712(4)0.0694(18)
H30.5074010.7678340.5314970.083*
C40.4561(3)0.8127(9)0.3973(5)0.0748(19)
H40.4829250.8794830.4070480.090*
C50.4013(3)0.7825(8)0.3078(4)0.0612(16)
H50.3909190.8341310.2577510.073*
C60.3620(2)0.6767(7)0.2916(4)0.0462(13)
C70.3782(2)0.6082(6)0.3677(4)0.0516(14)
H70.3522120.5365310.3582830.062*
C80.3021(2)0.6415(8)0.1957(4)0.0588(15)
H8A0.2849310.5463030.1988200.071*
H8B0.2780080.7436650.1737830.071*
  1. aOccupancy: 0.5.

Source of material

The title compound was synthesized by the reaction of 57% aqueous hydroiodic acid and 1,3-phenylenedimethanamine at ambient conditions.

Experimental details

A single crystal of the title compound was directly selected from the mother liquor and mounted on a Xcalibur four-circle diffractometer equipped with an EOS detector [2]. An absorption correction (Numerical absorption correction based on Gaussian integration) was applied [2]. The structure solution and the refinement succeeded using the SHELX program system [3], [4], [5].

Atomic coordinates of hydrogen atoms at the water molecule were refined using distance restraints. All other hydrogen atoms were added using a riding model with fixed Uiso parameters. The maximum residual peak of 1.53 e Å−3 is found 0.87 Å from I4 and the deepest hole of −1.20 e Å−3 is found 0.75 Å from I4.

Comment

Nowadays, polyiodides (known in the 19th and the beginning of the 20th century as periodides [6]) are defined as the anionic components of salts that fulfill the general formula In-2m-n(n = 2–5, m = integer). Even the most complex polyiodides are composed of some basic ions (I, I3) and I2 molecules, respectively. The aforementioned anions and the diiodine molecule tend to form olygomeric ions and extended aggregates by means of weak to medium strong halogen bonds [7], [8], [9]. It is well known that short chain polyiodides are key ions in the charge transfer processes of the classical dye-sensitised solar cells [10], [11]. It should not remain unmentioned that polyiodide species may be used as ambipolar zinc electrolytes [12] and further promoted some developments in the field of lithium–iodine redox batteries [13]. There are new considerations that suggest they might have anti-microbial properties [14]. A well established field of research is the synthesis of new polyiodide-containing salts based on organic cations [15]. We have already shown that the lengths and shapes of cations influence or even determine the topology of the embedded polyiodide anions [16], [17], [18], [19] and the inclusion of neutral iodine molecules [20], [21]. Besides the quitous triiodide anion, in recent years the presence of formal I42− anions have been reported more often [22], [23]. The formal I42− anion is of particular interest as, depending on the interpretation of the iodide–iodine bonds, an alternative description as two iodide anions weakly attached to one I2 molecule is possible [20], [21]. Another distortion of the formal I42− may lead to the adduct of two anions [I ⋅ I3] [24], [25]. This contribution is part of a long term project, which focuses on polyiodides designed and trapped in hydrogen-bonded surroundings [16], [17], [18], [19], [20], [21], [26], [27].

The asymmetric unit of the title structure contains one 1,3-phenylenedimethanaminium dication, one discrete triodide anion, one half of a I42− anion as well as a water molecule (left part of the figure). In order to avoid any confusion with true pentaiode salts [15] the more structured compound name bis(1,3-phenylenedimethanaminium) bis(triiodide) tetraiodide – water (1/2) is used. Bond lengths and angles in the cation are in the range of expectation [28], [29], [30]. Even though nitrogen-based cations containing an aryl and an alky moiety are well known to stabilize polyiodes [31], it was surprising that not even the crystal structure of the 1,3-phenylenedimethanaminium hydroiodide is reported. The 1,3-phenylenedimethanaminium has a conformational flexibility by a rotation about the C1–C2 and C6–C8 single bonds, respectively (left part of the figure). A dihedral angle of −177.5(4)° for the atoms N1, C2, C8, N2 in this structure leads to double hook shape of the dication. The aminium group N1 forms weak hydrogen bonds with iodine atoms only, whereas the aminium group N2 forms normal to weak hydrogen bonds with two water molecules and one iodine (see the left part of the figure). The donor⋯acceptor distances for N⋯O are 2.879(6) Å and 2.956(7) Å, respectively. The N⋯I distances shown in the left part of the figure range from 3.602(5) Å to 3.811(5) Å. The anionic substructure consists of a triiodide anion and a formal I42− anion aranged around a twofold axis. The twofold axis is shown as black line in the left part of the figure. The disrecte triiodode ion (I1-I2-I3) shows the typical asymmetry: I1–I2 = 2.8882(15) Å; I2–I3 = 2.9613(15) Å. In accordance with the literature [16], [27], [32], [33] the asymmetry is dependent on the intermolecular interactions in the solid state, which are mainly hydrogen bonds in this case. The formal I42− anion is characterised by a I5–I6 single bond 2.7762(13) Å for the I2 molecule [34] and two different medium strong halogen bonds [I4–I5 = 3.2538(10) Å, I6–I4′ = 3.3816(10) Å, ′ = 1−x, −1 + y, 1.5 − z]. The 1/1 disorder model of the I2 moiety in the formal I42− anion opens the way for different interpretations (see the right part of the figure). Within the crystal there may be some domains which realise a strictly ordered stacking (columns A and B in the right part of the figure). It nonetheless remains conceivable that iodine moieties change their orientations to create smaller or even extended chain snippets (Mixed model column in the right part of the figure). The shortest iodine iodine distance between the triodide anion and the I42− anion is almost 4.0 Å, which rules out any significant bonding interactions as it simply represents the iodine – iodine van der Waals distance in various scales [35].

The formal I42− anion in the title structure looks like a snapshot of an intermediate between the well known centrosymmetric arrangement [20] and two discrete anions [I ⋅ I3] [24], [25] and may lead to a better understanding of the bonding schemes of short-chain polyiodides.

Acknowledgements

I thank Niklas Brandt for supplying crystals of the title compound for this crystallographic study. I furthermore gratefully acknowledge support by the Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) for financial support (Xcalibur diffractometer; INST 208/533-1, project no. 162659349). Finally, funding by the open access fund of the Heinrich-Heine-Universität Düsseldorf is gratefully acknowledged.

References

1. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Ver. 4.5.2 Crystal Impact, Bonn, Germany (2018).Search in Google Scholar

2. Oxford Diffraction: CrysAlisPRO, (version 1.171.33.42). Oxford Diffraction Ltd., Oxford, UK (2009).Search in Google Scholar

3. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

4. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

5. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B.; ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44 (2011) 1281–1284.10.1107/S0108767319098143Search in Google Scholar

6. Tilden, W. A.: On the periodides of some of the organic bases. J. Chem. Soc. 18 (1865) 99–105.10.1039/JS8651800099Search in Google Scholar

7. Bartashevich, E.; Yushina, I.; Kropotina, K.; Muhitdinova, S.; Tsirelson, V.: Testing the tools for revealing and characterizing the iodine-iodine halogen bond in crystals. Acta Crystallogr. B73 (2017) 217–226.10.1107/S2052520617002931Search in Google Scholar PubMed

8. Blake, A. J.; Devillanova, F. A.; Gould, R. O.; Li, W. S.; Lippolis, V.; Parsons, S.; Radek, C.; Schröder, M.: Template self-assembly of polyiodide networks. Chem. Soc. Rev. 27 (1998) 195–205.10.1039/a827195zSearch in Google Scholar

9. Svensson, P. H.; Kloo, L.: Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 103 (2003) 1649–1684.10.1021/cr0204101Search in Google Scholar PubMed

10. O’Regan, B.; Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (1991) 737–739.10.4324/9781315793245-57Search in Google Scholar

11. Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Grätzel, M.; Hagfeldt, A.: The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10 (2017) 710–727.10.1039/C6EE03397KSearch in Google Scholar

12. Li, B.; Nie, Z.; Vijayakumar, M.; Li, G.; Liu, J.; Sprenkle, V.; Wang, W.: Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nature Commun. 6 (2015) 6303, 8 pages.10.1038/ncomms7303Search in Google Scholar PubMed PubMed Central

13. Zhao, Y.; Hong, M.; Bonnet Mercier, N.; Yu, G.; Choi, H. C.; Byon, H. R.: A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano Lett. 14 (2014) 1085–1092.10.1021/nl404784dSearch in Google Scholar PubMed

14. Edis, Z.; Haj Bloukh, S.; Abu Sara, H.; Bhakhoa, H.; Rhyman, L.; Ramasami, P.: ‘Smart’ triiodide compounds: does halogen bonding influence antimicrobial activities? Pathogens 8 (2019) 182 (20 pages).10.3390/pathogens8040182Search in Google Scholar PubMed PubMed Central

15. Reiss, G. J.: A cyclic I102− anion in the layered crystal structure of theophyllinium pentaiodide, C7H9I5N4O2. Z. Kristallogr. NCS 234 (2019) 737–739, and references cited therein.10.1515/ncrs-2019-0082Search in Google Scholar

16. van Megen, M.; Reiss, G. J.: I62− Anion composed of two asymmetric triiodide moieties: a competition between halogen and hydrogen bond. Inorganics 1 (2013) 3–13.10.3390/inorganics1010003Search in Google Scholar

17. Reiss, G. J.; van Megen, M.: Two new polyiodides in the 4,4′-bipyridinium diiodide/iodine system. Z. Naturforsch. B67 (2012) 5–10.10.5560/ZNB.2012.67b0005Search in Google Scholar

18. Reiss, G. J.; Engel, J. S.: Hydrogen bonded 1,10-diammoniodecane – an example of an organo-template for the crystal engineering of polymeric polyiodides. CrystEngComm 4 (2002) 155–161.10.1039/B203499ASearch in Google Scholar

19. Meyer, M. K.; Graf, J.; Reiss, G. J.: Dimer oder nicht dimer das ist hier die Frage: Zwei benachbarte I3-Ionen eingeschlossen in den Hohlräumen eines komplexen Wirtsgitters. Z. Naturforsch. B65 (2010) 1462–1466.10.1515/znb-2010-1209Search in Google Scholar

20. van Megen, M.; Jablonka, A.; Reiss, G. J.: Synthesis, structure and thermal decomposition of a new iodine inclusion compound in the 2,2-dimethylpropane-1,3-diamine/HI/I2 system. Z. Naturforsch. B69 (2014) 753–760.10.5560/znb.2014-4088Search in Google Scholar

21. Reiss, G. J.: Two iodine-rich (dimethylphosphoryl)methanaminium iodides. Z. Kristallogr. CM 232 (2017) 789–795.10.1515/zkri-2017-2071Search in Google Scholar

22. Müller, M.; Albrecht, M.; Gossen, V.; Peters, T.; Hoffmann, A.; Raabe, G.; Valkonen, A.; Rissanen, K.: Anion-π interactions in salts with polyhalide anions: trapping of I42−. Chem. Eur. J. 16 (2010) 12446–12453.10.1002/chem.201001534Search in Google Scholar PubMed

23. Yushina, I. D.; Rudakov, B. V.; Stash, A. I.; Bartashevich, E. V.: Comparison of non-covalent interactions and spectral properties in 1-methyl-3-methylthio-5-phenyl-1,2,4-triazinium mono- and tetraiodide crystals. Struct. Chem. 30 (2019) 1981–1991.10.1007/s11224-019-01372-3Search in Google Scholar

24. W eclawik, M.; Szklarz, P.; Medycki, W.; Janicki, R.; Piecha-Bisiorek, A.; Zieliński, P.; Jakubas, R.: Unprecedented transformation of [I− . I3] to [I42−] polyiodides in the solid state: structures, phase transitions and characterization of dipyrazolium iodide triiodide. Dalton Trans. 44 (2015) 18447–18458.10.1039/C5DT02265GSearch in Google Scholar PubMed

25. Manca, G.; Ienco, A.; Mealli, C.: Factors controlling asymmetrization of the simplest linear I3 and I42− polyiodides with implications for the nature of halogen bonding. Cryst. Growth Des. 12 (2012) 1762–1771.10.1021/cg201154nSearch in Google Scholar

26. Merkelbach, J.; Majewski, M. A.; Reiss, G. J.: Crystal structure of caffeinium triiodide – caffeine (1/1), C16H21I3N8O4. Z. Kristallogr. NCS 233 (2018) 941–944.10.1515/ncrs-2018-0125Search in Google Scholar

27. Reiss, G. J.: Halogen and hydrogen bonding in the layered crystal structure of 2-iodoanilinium triiodide, C6H7I4N. Z. Kristallogr. NCS 234 (2019) 899–902.10.1515/ncrs-2019-0127Search in Google Scholar

28. Arkenbout, A. H.; Meetsma, A.; Palstra, T. T. M.: (p-Phenylenedimethylene)diammonium dichloride. Acta Crystallogr. E63 (2007) o869–o870.10.1107/S1600536807002619Search in Google Scholar

29. Cheng, H.; Li, H.: (m-Phenylenedimethylene)diammonium dichloride. Acta Crystallogr. E64 (2008) o2060.10.1107/S1600536808031334Search in Google Scholar PubMed PubMed Central

30. DeBurgomaster, P.; Ouellette, W.; Liu, H.; O’Connor, C. J.; Yee, G. T.; Zubieta, J.: Solvatothermal chemistry of organically-templated vanadium fluorides and oxyfluorides. Inorg. Chim. Acta 363 (2010) 1102–1113.10.1016/j.ica.2009.09.053Search in Google Scholar

31. Savastano, M.; Martńnez-Camarena, Á.; Bazzicalupi, C.; Delgado-Pinar, E.; Llinares, J. M.; Mariani, P.; Verdejo, B.; García-España, E.; Bianchi, A.: Stabilization of supramolecular networks of polyiodides with protonated small tetra-azacyclophanes. Inorganics 7 (2019) 48 (17 pages).10.3390/inorganics7040048Search in Google Scholar

32. Marks, T. J.; Kalina, D. W.: Highly conductive halogenated low-dimensional materials. In Vol. 1: Extended linear chain compounds, (Ed. J. S. Miller), pp. 197–331. Plenum Press, New York, USA (1982).10.1007/978-1-4613-3249-7_6Search in Google Scholar

33. Yushina, I. D.; Batalov, V. I.; Bartashevich, E. V.; Davydov, A. O.; Zelenovskiy, P. S.; Masunov, A. E.: Raman spectroscopy and theoretic study of hyperpolarizability effect in diiodobutenyl-bis-thioquinolinium triiodide at low temperature. J. Raman Spectrosc. 48 (2017) 1411–1413.10.1002/jrs.5159Search in Google Scholar

34. Bolhuis, F.; Koster, P. B.; Migchelsen, T.: Refinement of the crystal structure of iodine at 110°K. Acta Crystallogr. 23 (1967) 90–91.10.1107/S0365110X6700218XSearch in Google Scholar

35. Hu, S.-Z.; Zhou, Z.-H.; Xie, Z.-X.; Robertson, B. E.: A comparative study of crystallographic van der Waals radii. Z. Kristallogr. CM 229 (2014) 517–523.10.1515/zkri-2014-1726Search in Google Scholar

Received: 2020-03-27
Accepted: 2020-04-23
Published Online: 2020-05-11
Published in Print: 2020-08-26

©2020 Guido J. Reiss published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. Crystal structure of isopimara-7,15-dien-3-one, C20H30O
  3. Crystal structure of bis(6-aminopyridine-2-carboxylato-κ2O,N)-copper(II), C12H10O6N4Cu
  4. Crystal structure of 5,6-diphenyldibenzo[c, g]chrysene, C38H24
  5. Poly[bis(dimethylformamide-κO)-(μ8-5,5′′-dicarboxy-[1,1′:4′,1′′-terphenyl]-2′,3,3′′,5′-tetracarboxylato-κ8O:O1:O2:O3:O4:O5:O6:O7)dizinc(II)] — dimethylformamide (1/2), C18H19N2O8Zn
  6. The crystal structure of poly[bis(N,N-dimethylformamide-κ1O)(μ4- 2′,5,5′,5′′-tetracarboxy-[1,1′:4′,1′′-terphenyl]-3,3′′-dicarboxylato-κ4O:O′:O′′:O′′′)manganese(II)] — N,N-dimethylformamide (1/2), C36H40N4O16Mn
  7. Crystal structure of N,N-dimethyl-4-((7-nitrobenzo[c][1,2,5]thiadiazol-4-yl)ethynyl)aniline, C16H12N4O2S
  8. The crystal structure of 8a-methoxy 8a-methoxy-1,5,8a,9a-tetrahydro-4H-8,9-dioxa-3a1λ4-aza-8aλ4, C18H14BNO3
  9. Crystal structure of poly[diaqua-(μ2-5-isopropoxyisophthalato-κ2O:O′)-(μ2-(1,3-bis(3,5-di(1H-imidazol-1-yl)pyridine))-κ2N:N′)cobalt(II)] monohydrate, C22H25N5O8Co
  10. The crystal structure of acetoximium 1′-hydroxy-1H,1H′-5,5′-bitetrazole-1-olate monohydrate, C5H11N9O4
  11. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-vinyl-1H-imidazol-3-ium hexafluoridophosphate(V), C9H13F6N2O2P
  12. The crystal structure of catena-poly[(μ2-4-(benzo[d]imidazol-2-yl)benzenecarboxylato-κ2N,O)-(μ2-4-(benzo[d]imidazol-2-yl)benzenecarboxylato-κ3N,O:O′)cadmium(II)]dihydrate, C28H22CdN4O6
  13. Enzyme-mediated synthesis and crystal structure of (2R,4S)-hydroxyketamine, C13H16ClNO2
  14. The crystal structure of bis(isothiocyanato-κ1N)-(methanol-κ1O)-[2-morpholine-4-yl-4,6-di(pyrazol-1-yl)-1,3,5-triazine-κ3N,N′,N′′] manganese(II), C16H18MnN10O2S2
  15. Crystal structure of bis{5-chloro-2-(((4-trifluoromethyl)imino)methyl)phenolato-κ2N,O}copper(II), C28H16Cl2CuF6N2O2
  16. Crystal structure of bis(1,3-phenylenedimethanaminium) bis(triiodide) tetraiodide – water (1/2) , C8H16I5N2O
  17. Crystal structure and anti-inflammatory activity of (3E,5E)-3,5-bis(2-fluorobenzylidene)-1-((4-fluorophenyl)sulfonyl)piperidin-4-one, C25H18F3NO3S
  18. The crystal structure of bis{3-(diphenylphosphaneyl)propanoato-κ2O,P}platinum(II) dihydrate, C30H28O6P2Pt
  19. The crystal structure of (E)-2-(4-((4-fluorobenzyl)oxy)styryl)-4,6-dimethoxybenzaldehyde, C24H21FO4
  20. Crystal structure of bis[3-methoxy-N-(1-(pyrazin-2-yl)ethylidene)benzohydrazonato-κ3O,N,N′]nickel(II), C28H26N8O4Ni
  21. Crystal structure of 1-(2-(pyridin-2-yl)-5-(pyridin-3-yl)-1,3,4-oxadiazol-3(2H)-yl)ethan-1-one, C14H12N4O2
  22. Synthesis and crystal structure of 3-N-acetyl-5-(pyridin-3-yl)-2-(quinolin-2-yl)-1,3,4-oxadiazoline, C18H14N4O2
  23. Crystal structure of 2-methyl-1H-perimidine, C12H10N2
  24. Crystal structure of (E)-2-(5,5-dimethyl-3-(4-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)oxy)styryl)cyclohex-2-en-1-ylidene)malononitrile, C25H19N5O4
  25. Structural elucidation of 1-(3-acetyl-2,6-dihydroxy-4-methoxyphenyl)-4,5-dihydroxy-2-methylanthracene-9,10-dione isolated from Bulbine latifolia (L.) Wild, C24H18O8
  26. Crystal structure of 3-cinnamoyl-4-hydroxybenzoic acid, C16H12O4
  27. The crystal structure of poly[bis(μ4-2,3-pyridinedicarboxylato)-(μ2-oxalyl dihydrazide)-dicadmium(II) dihydrate], C16H16O12N6Cd2
  28. Synthesis and crystal structure of 1-{4-[(3-bromo-2-hydroxy-benzylidene)amino]phenyl}ethanone, C15H12BrNO2
  29. Synthesis and crystal structure of 1-{4-[(2-bromo-6-hydroxy-benzylidene)amino]phenyl}ethanone, C15H12BrNO2
  30. Crystal structure of (4-aminobenzoato-κ2O,O′)-[5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′]nickel(II) perchlorate monohydrate, C23H44ClN5NiO7
  31. Crystal structure of 1-{4-[(4-fluoro-2-hydroxy-benzylidene)amino]phenyl}ethanone, C15H12FNO2
  32. Preparation and crystal structure of a non-symmetrical vanadium(II) dimer: tri-μ2-bromido-(hydrogen-tris(3-isopropyl-4-bromopyrazol-1-yl)borato-κ3N,N′,N′′)-tris(tetrahydrofuran-κO)divanadium(II) – tetrahydrofuran (1/1), C34H57BBr6N6O4V2
  33. Crystal structure of bis{2-(((4-(1-(hydroxyl-imino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}cobalt(II), C30H26CoN4O4
  34. Crystal structure of 3-((3-nitrophenyl)sulfonamido)propanoic acid — 4,4′-bipyridine (1/1), C19H18N4O6S
  35. Crystal structure of cyclo[diaqua-bis(μ2-3′,5-dicarboxy-[1,1′-biphenyl]-3,4′-dicarboxylato-κ4O,O′:O′′,O′′′)-bis(4,4′-bis(pyrid-4-yl)biphenyl-K1N)dicadmium(II)], C76H52Cd2N4O18
  36. Crystal structure of 1-(adamantan-1-yl)-3-aminothiourea, C11H19N3S
  37. Crystal structure of catena-poly[triaqua-(μ2-1,4-di(pyridin-4-yl)benzene-κ2N:N′)-(3′,5-dicarboxy-[1,1′-biphenyl]-3,4′-dicarboxylato-κO)nickel(II)], C32H26N2O11Ni
  38. Crystal structure of catena-poly[aqua-(μ4-4,4′-(pyridine-3,5-diyl)dibenzoato-κ4O,O′:O′′:O′′′)zinc(II)], C19H13NO5Zn
  39. Crystal structure of 4-(4′-(pyridin-4-yl)-[1,1′-biphenyl]-4-yl)pyridin-1-ium 2-carboxy-4-(3,5-dicarboxyphenoxy)benzoate hydrate, C38H28N2O10
  40. Crystal structure of 3-[(triisopropylsilanyl)-ethynyl]-6a,12a-dihydro-1H-1,4-diaza-benzo[α]anthracene-2,7,12-trione, C27H28N2O3Si
  41. Crystal structure of [(bis(1,10-phenanthroline-κ2N,N′)-(2-carboxy-4-(3-carboxy-5-carboxylatophenoxy)benzoato-κ2O:O′))nickel(II) monohydrate, (1,10-phenanthroline-κ2N:N′)-(μ2-(5-(3′,4′-dicarboxylphenoxy)-isophthalate-κ2O:O′))nickel(II)], C40H24N4O9Ni ⋅ H2O
  42. Crystal structure of 4-(3-(pyridin-3-yl)ureido)benzoic acid — adipic acid (2/1), C16H16N3O5
  43. Crystal structure of poly[bis{μ2-5-carboxy-4′-methyl-[1,1′-biphenyl]-3-carboxylato-κ2O:O′}-{μ2-4,4′-bipyridine-κ2N:N′}]cobalt(II), C40H30N2O8Co
  44. Crystal structure of aqua-(2,2′-bipyridine-κ2N,N′)(((3-nitrophenyl)sulfonyl)glycine-κ2N,O)copper(II) dihydrate, C18H20CuN4O9S
  45. Crystal structure of bis{2-bromo-6-(((4-(1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}copper(II), C32H28Br2CuN4O4
  46. Crystal structure of bis(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)zinc(II), C40H28Cl4N4O4Zn
  47. Crystal structure of 2-(3,6-dimethyl-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)-2-oxoethyl acetate, C14H17NO4
  48. Crystal structure of poly[dibromido-bis(μ2-1,6-di(1H-imidazol-1-yl)hexane-κ2N:N′)cadmium(II)], C24H36Br2N8Cd
  49. Synthesis and crystal structure of ((6R,7S)-3-ethyl-6-phenyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanone hemihydrate, 2(C19H18N4OS) ⋅ H2O
  50. Crystal structure of 2-(5-(pyridin-3-yl)-4-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)pyridine, C17H12N6
  51. The crystal structure of N-((1E,2E)-1,3-bis(4-fluorophenyl)but-2-en-1-ylidene)-4-methylbenzenesulfonamide, C23H19F2NO2S
  52. Crystal structure of diacetato-κ1O-diethanol-κ1O-bis(μ2-2-(((2-hydroxyethyl)imino)methyl)-5-methoxyphenolato-κ4O,N,O′:O′′)dinickel(II), C28H42Ni2N2O12
  53. The crystal structure of catena-poly[chlorido-(μ2-1,4-bis(pyridin-3-yl-methoxy)benzene-κ2N:N′)copper(II)], C18H16ClN2O2Cu
  54. N′,N′′′-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methaneylylidene))bis(2-hydroxybenzohydrazide)nickel(II), C30H24N4NiO6
  55. Crystal structure of (E)-3′,6′-bis(ethylamino)-2′,7′-dimethyl-2-(2-((quinolin-2-ylmethylene)amino)ethyl)spiro[isoindoline-1,9′-xanthen]-3-one, C38H37N5O2
  56. Crystal structure of 4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl-1-ium 5,3′,5′-tricarboxy-[1,10-biphenyl]-2-carboxylate, C25H17N2O8
  57. The crystal structure of 1-carboxy-2-(1H-indol-3-yl)-N,N,N-trimethylethan-1-ammonium chloride, C14H19N2O2Cl
  58. The crystal structure of 5-bromo-2-fluoronicotinic acid monohydrate, C6H5BrFNO3
  59. Crystal structure of ethyl 3-(trifluoromethyl)-1H-pyrazole-4-carboxylate, C7H7F3N2O2
  60. Crystal structure of tetrakis(1H-benzo[d]imidazol-3-ium) bis(μ5-phenylphosphonato)-pentakis(μ2-oxido)-decaoxo-penta-molybdenum dihydrate, C40H42Mo5N8O23P2
  61. Structure of 7-(3,3,4,4,5,5-hexafluoro-2-(2-methylbenzo[b]thiophen-3-yl)cyclopent-1-en-1-yl)-8-methylquinoline, C24H15F6NS
  62. Crystal structure of monocarbonyl[2-((cyclopentylmethylene)amino)-5-methylphenolato-κ2N,O] (tricyclohexylphosphine)rhodium(I), C32H48NO2PRh
  63. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(pyrazole-κN)rhenium(I)nitrate, C18H12O3N4Re
  64. Crystal structure of poly[diaqua-bis(μ2-4-(3-(pyridin-3-yl)-1H-1,2,4-triazol-5-yl)benzoato-κ2N:O)nickel(II)], C28H22O6N8Ni
  65. Crystal structure of 4,4′-bis(pyridin-1-ium-4-yl)biphenyl poly[bis(μ2-4,4′-bis(pyrid-4-yl)biphenyl-K2N:N′)-tetrakis(μ4-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-K4O,O′:O′′:O′′′)-bis[[μ2-1,1′-biphenyl]-3-carboxyl-5-carboxylato-K2O:O′]tetracobalt(II)]— [1,1′-biphenyl]-3,5-dicarboxylic acid (1/2), C93H68N3O16Co2
  66. The crystal structure of 4a-formyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydro-1-2-6a,6b,9,9,12a-heptamethylpicen-10-yl acetate, C32H50O3
  67. Crystal structure of 3,3′-(1,2-phenylenebis(methylene))bis(1-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C16H20F12N4P2
  68. Crystal structure of catena-poly[diaqua-(μ2-tartrato-κ4O,O′:O′′,O′′′)zinc(II)], C4H8O8Zn
  69. The crystal structure of (6aR,6bS,8aS,8bR,9S,11aS,12aS,12bS)-10-(4-acetoxy-3-methylbutyl)-6a,8a,9-trimethyl-3,4,5,6,6a,6b,7,8,8a,8b,9,10,11a,12,12a,12b-hexadecahydro-1H-naphtho[2′,1′:4,5]indeno[2,1-b]furan-4-yl acetate, C31H48O5
  70. Crystal structure of 4,4′-(oxybis(methylene))bis(bromobenzene), C14H12Br2O
  71. Crystal structure of (N,N-dimethylsulphoxide)-[N-(3-ethoxy-2-(oxide)benzylidene)-3-methoxybenzenecarbohydrazonato-κ3N,O,O′]-dioxo-molybdenum(VI), C19H22MoN2O7S
  72. Crystal structure of dichlorido-bis(dimethyl sulphoxide-κO)-bis(4-methylbenzyl-κC1)tin(IV), C20H30Cl2O2S2Sn
  73. Crystal structure of (E)-2-amino-N′-(2-hydroxy-4-(2-(piperidin-1-yl)ethoxy)benzylidene)benzohydrazide monohydrate, C21H26N4O3 ⋅ H2O
  74. Crystal structure of chloridotris(4-chlorophenyl)(dimethyl sulfoxide-κO)tin(IV), C20H18Cl4OSSn
  75. Crystal structure of catena{di-aqua-sodium-[N-(hydroxyethyl), N-isopropyl-dithiocarbamato]}n, [C6H16NNaO2S2]n
  76. Crystal structure of 2,2,4,4,6,6-hexakis(4-chlorophenyl)-1,3,5,2,4,6-trithiatristanninane, C36H24Cl6S3Sn3
  77. Crystal structure of 6-methoxy-3-(5-(3-methoxyphenyl)-1,3,4-oxadiazol-2-yl)-4H-chromen-4-one-methanol (1/1), C20H18N2O6
  78. Crystal structure of hexanedihydrazide, C6H14N4O2
  79. Crystal structure of tert-butyl 2-(hydroxymethyl)-5-{4-[(methoxycarbonyl)amino]phenyl}-2,5-dihydro-1H-pyrrole-1-carboxylate, C18H24N2O5
  80. Crystal structure of [(Z)-O-isopropyl N-(4-nitrophenyl)thiocarbamato-κS]-(triphenylphosphine-κP)-gold(I), C28H26AuN2O3PS
  81. Crystal structure of [O-ethyl N-(4-nitrophenyl)thiocarbamato-κS](tri-4-tolylphosphine-κP)gold(I) tetrahydrofuran solvate, C30H30AuN2O3PS, C4H8O
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0164/html
Scroll to top button