Home Physical Sciences Crystal structure of 8,8′-di-p-tolyl-8′H-7,8′-biacenaphtho[1,2-d]imidazole, C40H26N4
Article Open Access

Crystal structure of 8,8′-di-p-tolyl-8′H-7,8′-biacenaphtho[1,2-d]imidazole, C40H26N4

  • Al-Anood M. Al-Dies EMAIL logo , Abdullah M. Asiri , Salman A. Khan and Edward R.T. Tiekink
Published/Copyright: February 11, 2019

Abstract

C40H26N4, triclinic, P1̄ (no. 2), a = 9.5201(6) Å, b = 12.1701(8) Å, c = 12.8721(7) Å, α = 79.949(5)°, β = 88.350(5)°, γ = 75.893(6)°, V = 1424.05(16) Å3, Z = 2, Rgt(F) = 0.0519, wRref(F2) = 0.1403, T = 293 K.

CCDC no.: 1846947

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Orange block
Size:0.42 × 0.36 × 0.19 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.08 mm−1
Diffractometer, scan mode:SuperNova, ω-scans
θmax, completeness:29.4°, >85% (up to 25.2, >99%)
N(hkl)measured, N(hkl)unique, Rint:11508, 6653, 0.027
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4449
N(param)refined:399
Programs:CrysAlisPRO [1], SHELX [2], [3], ORTEP [4], PLATON [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
N10.09336(15)0.60751(12)0.08070(11)0.0375(3)
N20.17612(16)0.78196(12)0.08356(11)0.0376(3)
N3−0.07447(15)0.78009(13)0.11978(10)0.0374(3)
N4−0.28285(17)0.87236(14)0.03069(11)0.0430(4)
C10.07569(18)0.71149(15)0.13328(13)0.0363(4)
C20.20016(18)0.61409(15)0.01937(13)0.0351(4)
C30.24928(18)0.72045(15)0.02039(13)0.0351(4)
C40.36740(19)0.72264(15)−0.05458(13)0.0372(4)
C50.4534(2)0.79618(17)−0.08922(15)0.0475(5)
H50.44260.8646−0.06360.057*
C60.5589(2)0.7653(2)−0.16484(17)0.0580(6)
H60.61850.8145−0.18840.070*
C70.5771(2)0.66628(19)−0.20490(16)0.0546(5)
H70.64810.6496−0.25480.066*
C80.4892(2)0.58832(17)−0.17133(14)0.0422(4)
C90.4955(2)0.48285(18)−0.20522(15)0.0509(5)
H90.56350.4583−0.25490.061*
C100.4026(2)0.41671(18)−0.16574(15)0.0529(5)
H100.40930.3477−0.18940.063*
C110.2974(2)0.44906(16)−0.09058(14)0.0463(5)
H110.23480.4028−0.06550.056*
C120.28900(19)0.54982(15)−0.05528(13)0.0364(4)
C130.38521(18)0.61925(15)−0.09622(13)0.0356(4)
C140.12037(19)0.66553(15)0.24796(13)0.0380(4)
C150.0851(2)0.56613(17)0.29962(14)0.0475(5)
H150.02560.53220.26630.057*
C160.1378(3)0.51719(19)0.40020(16)0.0576(6)
H160.11260.45080.43390.069*
C170.2275(2)0.5651(2)0.45208(15)0.0559(5)
C180.2597(2)0.66566(19)0.40050(15)0.0527(5)
H180.31800.70030.43410.063*
C190.2067(2)0.71534(17)0.29999(14)0.0450(4)
H190.22940.78300.26700.054*
C200.2881(3)0.5089(3)0.56069(18)0.0851(8)
H20A0.35920.54630.57960.128*
H20B0.33250.42910.56080.128*
H20C0.21120.51550.61090.128*
C21−0.14360(19)0.82479(16)0.02182(13)0.0389(4)
C22−0.30516(19)0.85873(15)0.13727(13)0.0391(4)
C23−0.18093(19)0.80445(15)0.19418(13)0.0370(4)
C24−0.2097(2)0.80177(15)0.30815(13)0.0393(4)
C25−0.1361(2)0.77285(18)0.40235(14)0.0518(5)
H25−0.03650.74210.40470.062*
C26−0.2124(3)0.7901(2)0.49593(16)0.0597(6)
H26−0.16070.77060.55940.072*
C27−0.3586(3)0.83407(19)0.49774(16)0.0573(6)
H27−0.40510.84120.56160.069*
C28−0.4388(2)0.86878(16)0.40162(15)0.0462(5)
C29−0.5883(2)0.92308(18)0.38879(17)0.0533(5)
H29−0.64470.93510.44780.064*
C30−0.6500(2)0.95787(18)0.29062(17)0.0545(5)
H30−0.74840.99340.28440.065*
C31−0.5700(2)0.94192(17)0.19772(16)0.0485(5)
H31−0.61450.96640.13150.058*
C32−0.42543(19)0.88945(15)0.20800(14)0.0400(4)
C33−0.3615(2)0.85235(15)0.31000(14)0.0390(4)
C34−0.06952(19)0.82818(16)−0.08100(13)0.0400(4)
C35−0.0198(2)0.92410(18)−0.12243(15)0.0525(5)
H35−0.03480.9855−0.08600.063*
C360.0519(3)0.9298(2)−0.21698(16)0.0604(6)
H360.08550.9949−0.24300.072*
C370.0748(2)0.8414(2)−0.27379(16)0.0586(6)
C380.0204(2)0.7473(2)−0.23408(15)0.0577(6)
H380.03200.6876−0.27230.069*
C39−0.0506(2)0.73986(18)−0.13918(14)0.0487(5)
H39−0.08600.6755−0.11410.058*
C400.1586(4)0.8472(3)−0.3754(2)0.1058(11)
H40A0.11320.9153−0.42360.159*
H40B0.15970.7806−0.40630.159*
H40C0.25620.8492−0.36080.159*

Source of material

In the dark, a freshly prepared solution of potassium ferricyanide (2.12 g, 6.44 mmol) and potassium hydroxide (1.08 g, 19.33 mmol) in water (200 mL) was added over a period of 0.5 h to 8-(p-yolyl)-7H-acenaphtho [1,2-d]imidazole ([6], 1 g, 3.54 mmol) in benzene (100 mL) in an ice-bath with vigorous stirring. The reaction mixture was stirred overnight at room temperature. The organic layer was collected and washed three times with water, and the aqueous phase was extracted with benzene three times and combined. The solution was dried over sodium sulfate, evaporated and dried. The radical dimerization reaction gave the title compound. The resulting solid was recrystallised from benzene/ethanol to give orange crystals. Yield: 67%. M.p. (Stuart Scientific Co. Ltd apparatus): 519−521 K. IR (PerkinElmer spectrum 100 FT-IR spectrophotometer; ν(max), cm−1): 3072, 3023 (aromatic-CH stretch), 2969, 2860 (CH3 stretch), 1429, 1369 (CH3 bend), 1638 (C=N), 1608, 1484 (C=C), 1281 (C—N).

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.93−0.96 Å) and refined as riding with Uiso(H) = 1.2−1.5Ueq(C).

Discussion

Imidazole- and π-expanded imidazole derivatives are emission-tuneable, fluorescent dyes and have been reported to display excited-state intramolecular proton transfer (ESIPT) properties [7]. In this context, molecules directly related to the title compound are readily prepared from the cyclocondensation of 4′,7′-phenanthroline-5′,6′-dione with various aldehydes followed by oxidative dimerization in the presence of hexacyanoferrate [8]. In the absence of structural data for these dimeric species, herein, the crystal and molecular structures of the title compound are described, adding to a complementary structure report [9].

The molecular structure of the title compound comprises 2,2-disubstituted imidazole (N1-ring) and N-substituted imidazole (N3-ring) rings connected by a N3—C1 bond [1.467(2) Å]. The different substitution patterns in the imidazole rings results is very different bond lengths within the five-membered cycles. The presence of formal C=N bonds in the N1-ring is seen in the N1—C2 and N2—C3 bond lengths of 1.279(2) and 1.278(2) Å, respectively, which are shorter than the equivalent bond lengths for the N3-ring of 1.389(2) Å [N3—C23] and 1.370(2) Å [N4—C22]. Consistent with this observation are the systematic variations in the remaining two C—N bonds in each ring. These have elongated considerably in the N1-ring with N1—C1 = 1.509(2) Å and N2—C1 = 1.494(2) Å compared to the N2—C2 and N3—C2 bonds. However, for the N3-ring, bonds have either elongated [N3—C21 = 1.397(2) Å] or shortened [N4—C21 = 1.321(2) Å] reflecting some double-bond character in the N4—C21 bond. Finally, the C—C bond lengths in the N1-ring [C2—C3 = 1.482(2) Å] and N3-ring [C22—C23 = 1.368(2) Å] follow the expected trends. Each of the five-membered rings is planar. The N1-ring has a r.m.s. deviation of 0.041 Å for the five atoms with the maximum deviation from the least-squares plane being 0.034(2) Å for the C1 atom. The N3-ring is considerably more planar, exhibiting a r.m.s. deviation of 0.008 Å and a maximum deviation of 0.007(2) Å for the N3 atom. As might be expected, the delocalization of π-electron density extends over the entire residue and consistent with this, is the r.m.s. deviation of 0.018 Å for the 15 atoms, N1, N2, C1—C13; for the N3, N4, C21—C33 atoms, the r.m.s. deviation is 0.048 Å. The dihedral angle between the two 15-membered residues is 83.07(3)°, indicating an almost orthogonal relationship. Finally, the dihedral angle between the 15-membered residue with the N3 atom and appended C34-tolyl residue is 89.47(5)°, also indicating an orthogonal relationship.

In the molecular packing, extensive π—π and C—H⋯π interactions are evident and cooperate to sustain the three-dimensional architecture. The most prominent π—π interaction occurs between (C2—C4, C12, C13) and (C8—C13) rings [inter-centroid distance = 3.6163(11) Å, angle of inclination = 0.23(9)° for symmetry operation: 1-x, 1-y, -z]. The shortest and most directional C—H⋯π interaction is a phenyl-C9—H⋯π(C14—C19) contact [H9⋯ring centroid separation = 2.78 Å, C9⋯ring centroid = 3.672(2) Å, angle at H9 = 161° for symmetry operation: 1-x, 1-y, -z].

Award Identifier / Grant number: 1-17-01-009-0046

Funding statement: The authors are thankful to the King Abdulaziz City for Science and Technology (KACST) (Grant No. 1-17-01-009-0046).

References

1. Agilent Technologies: CrysAlis PRO. Agilent Technologies, Santa Clara, CA, USA (2014).Search in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

5. Spek, A. L.: Structure validation in chemical crystallography. Acta Crystallogr. D65 (2009) 148–155.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central

6. Khan, S. A.; Asiri, A. M.; Al-Dies, A.-A. M.; Osman, O. I.; Asad, M.; Zayed, M. E.: One-pot synthesis, physicochemical and photophysical properties of deep blue light-emitting highly fluorescent pyrene-imidazole dye: a combined experimental and theoretical study. J. Photochem. Photobiol. A: Chem. 364 (2018) 390–399.10.1016/j.jphotochem.2018.06.015Search in Google Scholar

7. Skonieczny, K.; Ciuciu, A. I.; Nichols, E. M.; Hugues, V.; Blanchard-Desce, M.; Flamigni, L.; Gryko, D. T.: Bright, emission tunable fluorescent dyes based on imidazole and π-expanded imidazole. J. Mater. Chem. 22 (2012) 20649–20664.10.1039/c2jm33891bSearch in Google Scholar

8. Dora, E. K.; Dash, B.; Panda, C. S.: Synthesis of some fused 2-arylimidazoles and their derivatives. J. Indian Chem. Soc. 56 (1979) 620–624.10.1002/chin.198007239Search in Google Scholar

9. Al-Dies, A. M.; Asiri, A. M.; Khan, S. A.; Tiekink, E. R. T.: Crystal structure of 4,4′,5,5′-tetraphenyl-2,2′-di-p-tolyl-2′H-1,2′-biimidazole, C44H34N4. Z. Kristallogr. NCS 234 (2019) 465–467.10.1515/ncrs-2018-0473Search in Google Scholar

Received: 2018-11-13
Accepted: 2018-12-22
Published Online: 2019-02-11
Published in Print: 2019-03-26

©2019 Al-Anood M. Al-Dies et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Crystal structure of poly[aqua-μ2-4,4′-bis(pyrid-4-yl)biphenyl-κ2N:N′)-μ4-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-κ4O:O′:O′′:O′′′)manganese(II)], C52H40N2O10Mn2
  3. Crystal structure of bis[2-(((3-aminopropyl)imino)methyl)-4-nitro-phenolato-κ3N,N′,O]nickel(II), C20H24N6NiO6
  4. Synthesis and crystal structure of bis{2-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl) phenolato-κ2N,O}cobalt(II) — ethanol (1/1), C34H36CoN4O5
  5. Crystal structure of 1-(4-{2,5-dichloro-3-hydroxy-4-[4-(1-methoxyimino-ethyl)-phenylamino]-6-methyl-phenylamino}-phenyl)-ethanone O-methyl-oxime, C24H22Cl2N4O4
  6. The pseudosymmetric crystal structure of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane dimethyl carbonate (2/3), C21H30N24O33
  7. Crystal structure of (1,4-diazepane)4CuII2(μ-Cl)10CuI6, C20H48Cl10Cu8N8
  8. Crystal structure of methyl 2,7,7-trimethyl-4-(3-methylthiophen-2-yl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H23NO3S
  9. Crystal structure of methyl 2-(4-(pyrazolo[1,5-a]pyrimidin-6-yl)phenyl)acetate, C15H13N3O2
  10. Crystal structure of (1S,3aR,3bR,10aR,10bR,12aR)-8-amino-3a,3b,6,6,10a-pentamethyl-1-((S)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)-2,3,3a,3b,4,5,5a,6,10,10a,10b,11,12,12a-tetradecahydro-1H-cyclopenta[7,8]phenanthro[2,3-d]thiazol-12-ol – a panaxadiol dervative, C31H50N2O2S
  11. Crystal structure of bis[(((4-fluorophenyl)amino)methyl)triphenylphosphonium] tetrachloridocobaltate(II), C50H44Cl4CoF2N2P2
  12. Crystal structure of 5,4′-dihydroxy-7,3′-dimethoxyflavanone, C17H16O6
  13. Crystal structure of 3-methyl-cyclobis(1-(1,1′-ferrocenylmethyl)-4-butyl-1H-1,2,3-triazole) tetrafluoroborate, C21H25FeN6⋅BF4
  14. Crystal structure of 3-(2-diethylaminoethyl)-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C14H19N3OS
  15. Crystal structure of 2-(bis(3,5-dimethylphenyl) ((methyldiphenylsilyl)oxy)methyl) pyrrolidine, C34H39NOSi
  16. The crystal structure of 1,4-dinitro-2,3,5,6-tetraacetoxy-piperazine, C12H16N4O12
  17. Crystal structure of rac-3,6-dimethyl-5-(prop-1-en-2-yl)-6-vinyl-1,4,5,6-tetrahydro-2H-indol-2-one, C15H19NO
  18. Crystal structure of (Cu0.51In0.49)tet[Cr1.74In0.26]octSe4 selenospinel, Cu0.51In0.75Cr1.74Se4
  19. Crystal structure of 7-hydroxy-5-methoxy-4,6-dimethylisobenzofuran-1(3H)-one, C11H12O4
  20. Crystal structure of trans-tetrakis(acetonitrile-κN)bis(triphenylphosphine-κP)ruthenium(II) dihexafluorophosphate - dichloroform (1/2), C46H44Cl6F12N4P4Ru
  21. Crystal structure of 2-((4-nitrophenyl)thio)ethan-1-ol, C8H9NO3S
  22. Crystal structure of diaqua-dichlorido-bis(μ3-6,6′-(hydrazine-1,2-diylidenebis(methanylylidene))bis(2-methoxyphenolato)κ6O,N:N′,O′,O′:O′′)trizinc(II) - ethanol (1/2), C36H44Cl2N4O12Zn3
  23. Crystal structure of the co-crystal 2-[(2-carboxyphenyl)disulfanyl]benzoic acid – 3-chlorobenzoic acid (2/1), C35H25ClO10S4
  24. The crystal structure of 4-(3-chloro-4-fluorophenylamino)-7-methoxyquinazolin-6-ol, C15H11ClFN3O2
  25. Crystal structure of ethyl (E)-1-(3-ethoxy-3-oxoprop-1-en-1-yl)-2-(4-nitrophenyl)-2,5-dihydro-1H-benzo[b][1,4]diazepine-3-carboxylate, C23H23N3O6
  26. Crystal structure of (E)-2-(4-cyanophenyl)ethenesulfonyl fluoride, C9H6FNO2S
  27. Crystal structure of bis(4-bromo-2-(((3-chloropropyl)imino)methyl)phenolato-κ2N,O)-oxidovanadium(IV), C20H20Br2Cl2N2O3V
  28. The crystal structure of 1,1,1,3,3,3-hexaphenyldistannoxane – 2,2′-bipyridine (1/1), C46H38N2OSn2
  29. Crystal structure of coordination polymer catena-poly[diaqua-(2,6-dichloropyridine-4-carboxyliato-κ2O,O′)-bis(μ2-2,6-dichloropyridine-4-carboxyliato-κ2O:O′)terbium(III), C18H10Cl6N3O8Tb
  30. The crystal structure of 4-((2-(4,5-dihydro-1,5-diphenyl-1H-pyrazol-3-yl)anthracen-10-yl) methyl)morpholine, C34H31N3O
  31. The crystal structure of bis(N,N-dimethylformamide-κO)-tetrakis(9H-xanthene-9-carboxylic-carboxylate-κ2O:O′)dicopper(II) - acetonitrile (1/2), C66H56Cu2N4O14
  32. Crystal structure of trans-dichlorido-(1,3-dimesityl-1H-imidazol-2(3H)-ylidene)-(5-methyl-3,4-dihydro-2H-pyrrole-κN)palladium(II), C25H31Cl2N3OPd
  33. Crystal structure of 8,8′-di-p-tolyl-8′H-7,8′-biacenaphtho[1,2-d]imidazole, C40H26N4
  34. The crystal structure of 3-amino-(2,4-dioxopent-3-yl)-4,5-dihydro-1,2,4-triazinium nitrate, C8H13N5O5
  35. Crystal structure of 4,4′,5,5′-tetraphenyl-2,2′-di-p-tolyl-2′H-1,2′-biimidazole, C44H34N4
  36. Halogen bonds in the crystal structure of 2-bromo-1,10-phenanthroline – 1,4-diiodotetrafluorobenzene (2/1), C30H14Br2F4I2N4
  37. Crystal structure of tris(1-phenyl-1,2-propanedione-2-oximato-κ2N,O)cobalt(III), C27H24N3O6Co
  38. Crystal structure of chlorido-(6,6′-((1,2-phenylenebis(azanylylidene))bis(methanylylidene))bis(3-methoxyphenolato)-κ4O,N,N′,O′)iron(III), C22H18ClN2FeO4
  39. Crystal structure of bis(μ2-1-(4-chlorophenyl)-3-phenyl-4-thenoyl-1H-pyrazol-5-olato-κ3O,O′:O′)-bis-(1-(4-chlorophenyl)-3-phenyl-4-thenoyl-1H-pyrazol-5-olato-κ2O,O)-bis(ethyl acetate-κO)dicadmium(II), C88H64Cl4N8O12S4Cd2
  40. Crystal structure of catena-poly[dichlorido-(μ2-3-(2-pyridyl)-4-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole-κ2N:N′)] copper(II), C17H12N6Cl2Cu
  41. Crystal structure of dichlorido-([2,2′:6′,2′′-terpyridine]-4′-carboxylic acid-κ3N,N′,N′′)copper(II) monohydrate, C16H13Cl2CuN3O3
  42. Crystal structure of triethylammonium(5-carboxypyridine-2-thiolato-κ2N,S)-bis(dimethylsulfoxide-κ1S)-(6-sulfidonicotinato-κ2N,S)ruthenium(II) trihydrate, C22H41N3O9RuS4
  43. The crystal structure of poly[(μ5-2,5-dicarboxy-benzoato-κ4O:O:O′:O′′,O′′′)silver(I)], C9H5AgO6
  44. Crystal structure of (E)-1-(thiophen-2-yl)-N-(5-((triphenylstannyl)thio)-1,3,4-thiadiazol-2-yl)methanimine, C25H19N3S3Sn
  45. Crystal structure of diaqua-bis(3,5-dichloroisonicotinato-κ1O)-bis(1,3-di(pyridin-4-yl)propane-κ1N)cobalt(II), C38H36Cl4N6O6Co
  46. Crystal structure of dodecaaqua-bis(μ2-4,4′-bipyridine-κ2N:N′)-bis(4,4′-((5-carboxylato-1,3-phenylene)bis(oxy))dibenzoato-κ1O)tricopper(II) - water (1/4), C62H70Cu3N4O32
  47. Crystal structure of bis(5-methoxy-2-(((2-oxidoethyl)imino)methyl)phenolate-κ3O,N,O′)manganes(IV), C20H22N2O6Mn
  48. Crystal structure of tetramethylammonium (2-(3-ethoxy-2-oxidobenzylidene)-1-(2-hydroxybenzoyl)hydrazin-1-ido-κ3N,N′,O)cobalt(III), C36H40N5O8Co
  49. Crystal structure of 6-cyclohexyl-6,7-dihydrodibenzo[c,f][1,5]azabismocin-12(5H)-yl nitrate, C20H23O3N2Bi
  50. Crystal structure of (E)-N-((2S,3S,4R,10R,13S, 17S)-17-(1-(dimethylamino) ethyl)-2,4-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)-2-methylbut-2-enamide, C24H48N2O3
  51. Crystal structure of (E)-2-((4-chlorophenyl)(phenyl)methylene)hydrazine-1-carbothioamide, C14H12ClN3S
  52. Crystal structure of 1-benzyl-3-cyano-6-phenyl-1,2-dihydropyridine, C19H16N2
  53. Isolation and crystal structure of 4-((2-(methoxycarbonyl)phenyl)amino)-2-methyl-4-oxobutanoic acid from Delphinium Grandiflorum, C13H15N1O5
  54. Crystal structure of tetraqua-bis(4-(hydroxymethyl)benzoato-κO)nickel(II), C16H22O10Ni
  55. Crystal structure of ajacisine D monohydrate, C30H44N2O9
  56. The crystal structure of (E)-4-(1-(2-aminophenylimino)ethyl)benzene-1,3-diol, C14H14N2O2
  57. Crystal structure of poly[(μ4-(4H-1,2,4-triazol-4-yl)phenyl)acetato-κ4N,N′,O,O′)(formiato-κ1O)cobalt(II)], C11H9CoN3O4
  58. The crystal structure of bis tetrabutylammonium bis(μ3-2,2,2-tri(hydroxymethyl)ethyl-4-((3-methoxy-3-oxopropyl)amino)-4-oxobutanoato)-(μ6-oxido)-hexakis(μ2-oxido)-hexaoxido-hexavanadium(V), C58H112N4O29V6
  59. Crystal structure of (N-benzylpropane-1,3-diamine-κ2N, N′)(2,2′-bipyridine-κ2N,N′)platinum(II) chloride, C20H24Cl2N4Pt
  60. Crystal structure of 5-(5-(4-chlorophenyl)-1-phenyl-1H-pyrazol-3-yl)-N-phenyl-2-amine, C23H16ClN5O
  61. Crystal structure of poly-[(μ2(carboxylatomethyl)((3-nitrophenyl)sulfonyl)amido-κ3N: O:O′)(μ2-4,4′-bipyridine-κ2N:N′)copper(II)], C18H14CuN4O6S
  62. Crystal structure of poly-[(μ2-(carboxylatomethyl)((3-nitrophenyl)sulfonyl)amido-κ3N:O:O′)(μ2-4,4′-bipyridine-κ2N:N′) nickel(II)], C18H14NiN4O6S
  63. Crystal structure of N-((3R,10S,13S,17S)-17-((S)-1-(dimethylamino)ethyl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)-N-methylbenzamide, C31H48N2O
  64. The crystal structure of dichloroido(1,3-bis(2,6-dimethyl-phenyl)-1H-3l4-imidazol-2-yl)(2-methyl-4,5-dihydrooxazol-κN)palladium(IV)-water (1/1), C23H29Cl2N3O2Pd
  65. Crystal structure of catena-poly[dibromido-{μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4-ylmethylene)amino)-1,2-dihydro-3H-pyrazol-3-one-κ2N:O}zinc(II)], C34H32Br4N8O2Zn2
  66. Crystal structure of diaqua-dichlorido-bis(μ2-2-(((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato-κ4O:O,N,O′)dicobalt(II), C36H36Cl2N6O6Co2
  67. Crystal structure of catena-poly[diaqua-(μ2-1,2-bis(4-pyridinyl)ethyane-κ2N:N′)-(μ2–pyridazine-4,5-dicarboxylato-κ2O:O′)]dizinc(II) dihydrate, C12H12ZnN3O6
  68. The crystal structure of 2-(4-chloro-2,6-dinitrophenyl)-1-(4-chloro)diazene oxide, C12H6Cl2N4O5
  69. Crystal structure of 2-isopropylthioxanthone, C16H14OS
  70. Crystal structure of methyl 2-(4-(3-(1-methyl-1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidin-6-yl)phenyl)acetate, C19H17N5O2
  71. Crystal structure of 4,4-dimethyl-2-(trifluoromethyl)-4,5-dihydro-1H-imidazole, C6H9F3N2
  72. Crystal structure of N-methylanilinium 5,7-dihydroxy-4-oxo-2-phenyl-4H-chromene-8-sulfonate monohydrate, C22H21NO8S
  73. Crystal structure of methyl 4-acetoxybenzoate, C10H10O4
  74. Crystal structure of catena-poly[(bis(μ-1,1′-[(5-methoxy-2,4,6-trimethyl-1,3-phenylene)bis(methylene)]bis(1H-1,2,4-triazole)-κ2N:N′)-bis(isothiocyanato-κN)manganese(II)], C34H40MnN14O2S2
  75. Crystal structure of N-(2-methylphenyl)(propan-2-yloxy)carbothioamide, C11H15NOS
Downloaded on 7.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2018-0471/html
Scroll to top button