Startseite Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes

  • Noor Haider Abdul Ali Al-Shawi , Zhaleh Ebrahiminejad ORCID logo EMAIL logo und Somayeh Asgary
Veröffentlicht/Copyright: 19. Juli 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this research, a three-component composite was synthesized by using carbon nanotube as the background phase. Iron oxide phase with high magnetization and low coercivity (with particle size of 200 nm) has been coated on the carbon nanotubes. Then, the silver nanoparticles were coated on a conductive and magnetized substrate by an ultrasonic method. Semiconductor photocatalys is a favorable route for the degradation of organic pollutants. Ultraviolet–visible spectrophotometry has been used to investigate the photocatalytic properties of synthesized nanocomposite and control of their dye degradation on methyl blue, methyl orange and methyl red. The obtained nanocomposite is easily collected due to its magnetic property and does not pose a risk to environmental waters. The dye degradation degree has been compared for the produced nanocomposite. The experimental results confirmed that methyl red shows the greatest amount of degradation within 1 h, which was about 90 %, methyl orange shows about 80 %, and methyl blue shows the lowest degradation, around 60 %.


Corresponding author: Zhaleh Ebrahiminejad, Department of Physics, Islamic Azad University, West Tehran Branch, Tehran, Iran, E-mail: 

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Alivov, Y.; Singh, V.; Ding, Y.; Cerkovnik, L. J.; Nagpal, P. Nanoscale 2014, 6, 10839. https://doi.org/10.1039/c4nr02417f.Suche in Google Scholar PubMed

2. Lu, W.; Xu, T.; Wang, Y.; Hu, H.; Li, N.; Jiang, X.; Chen, W. Appl. Catal. B Environ. 2016, 180, 20. https://doi.org/10.1016/j.apcatb.2015.06.009.Suche in Google Scholar

3. Eghbali-Arani, M.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Pourmasoud, S. Ultrason. Sonochem. 2018, 43, 120. https://doi.org/10.1016/j.ultsonch.2017.11.040.Suche in Google Scholar PubMed

4. Madhavan, J.; Maruthamuthu, P.; Murugesan, S.; Anandan, S. Appl. Catal. B Environ. 2008, 83, 8. https://doi.org/10.1016/j.apcatb.2008.01.021.Suche in Google Scholar

5. Ma, Z.; Lin, F.; Liu, L.; Hu, B.; Wang, S.; Yu, S.; Wang, X. Efficient Decontamination of Organic Pollutants from Wastewater by Covalent Organic Framework-Based Materials. Sci. Total Environ. 2023, 901, 166453. https://doi.org/10.1016/j.scitotenv.2023.166453.Suche in Google Scholar PubMed

6. Fang, L.; Huang, T.; Lu, H.; Wu, X.-L.; Chen, Z.; Yang, H.; Wang, S.; Tang, Z.; Zhuang, L.; Hu, B.; Wang, X. Biochar-Based Materials in Environmental Pollutant Elimination, H2 Production and CO2 Capture Applications. Biochar 2023, 5, 42–66. https://doi.org/10.1007/s42773-023-00237-7.Suche in Google Scholar

7. Liu, X.; Li, Y.; Chen, Z.; Yang, H.; Wang, S.; Tang, Z.; Wang, X. Recent Progress of Covalent Organic Frameworks Membranes: Design, Synthesis, and Application in Water Treatment. Eco-Environ. Health 2023, 2 (3), 117–130. https://doi.org/10.1016/j.eehl.2023.07.001.Suche in Google Scholar PubMed PubMed Central

8. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106 (3), 1105–1136. https://doi.org/10.1021/cr050569o.Suche in Google Scholar PubMed

9. Sivashankar, R.; Sathya, A.; Vasantharaj, K.; Sivasubramanian, V. Magnetic Composite an Environmental Super Adsorbent for Dye Sequestration–A Review. Environ. Nanotechnol. Monit. Manag. 2014, 1, 36–49. https://doi.org/10.1016/j.enmm.2014.06.001.Suche in Google Scholar

10. Samadi, S.; Khalili, E.; Allahgholi Ghasri, M. R. Degradation of Methyl Red under Visible Light Using N,F-TiO2/SiO2/rGO Nanocomposite. J. Electron. Mater. 2019, 48, 7836–7845. https://doi.org/10.1007/s11664-019-07585-w.Suche in Google Scholar

11. Shelke, S. N.; Bankar, S. R.; Mhaske, G. R.; Kadam, S. S.; Murade, D. K.; Bhorkade, S. B.; Rathi, A. K.; Bundaleski, N.; Teodoro, O. M. N. D.; Zboril, R.; Varma, R. S.; Gawande, M. B. Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-Type Condensation Reactions. ACS Sustain. Chem. Eng. 2014, 2, 1699–1706. https://doi.org/10.1021/sc500160f.Suche in Google Scholar

12. Singamaneni, S.; Bliznyuk, V. N.; Binek, C.; Tsymbal, E. Y. Magnetic Nanoparticles: Recent Advances in Synthesis, Self-Assembly and Applications. J. Mater. Chem. 2011, 21, 16819–16845. https://doi.org/10.1039/c1jm11845e.Suche in Google Scholar

13. Chirita, M.; Grozescu, I. Fe2O3 – Nanoparticles, Physical Properties and Their Photochemical and Photoelectrochemical Applications. Chem. Bull. Politeh. Univ Timsisoara 2009, 54, 1–8.Suche in Google Scholar

14. Shukla, S.; Khan, R.; Daverey, A. Environ. Technol. Innov. 2021, 24, 101924. https://doi.org/10.1016/j.eti.2021.101924.Suche in Google Scholar

15. Aragaw, T. A.; Bogale, F. M.; Aragaw, B. A. J. Saudi Chem. Soc. 2021, 25, 101280. https://doi.org/10.1016/j.jscs.2021.101280.Suche in Google Scholar

16. El-Sheikh, A. H.; Qawariq, R. F.; Abdelghani, J. I. Adsorption and Magnetic Solid-Phase Extraction of NSAIDs from Pharmaceutical Wastewater Using Magnetic Carbon Nanotubes: Effect of Sorbent Dimensions, Magnetite Loading and Competitive Adsorption Study. Environ. Technol. Innov. 2019, 16, 100496. https://doi.org/10.1016/j.eti.2019.100496.Suche in Google Scholar

17. Sankar Sana, S.; Haldhar, R.; Parameswaranpillai, J.; Chavali, M.; Kim, S.-C. Clean. Mater. 2022, 6, 100161. https://doi.org/10.1016/j.clema.2022.100161.Suche in Google Scholar

18. Jaspal, D.; Malviya, A. Chemosphere 2020, 246, 125788. https://doi.org/10.1016/j.chemosphere.2019.125788.Suche in Google Scholar PubMed

19. Marimuthu, S.; Antonisamy, A. J.; Malayandi, S.; Rajendran, K.; Tsai, P. C.; Pugazhendhi, A.; Ponnusamy, V. K. Silver Nanoparticles in Dye Effluent Treatment: A Review on Synthesis, Treatment Methods, Mechanisms, Photocatalytic Degradation, Toxic Effects and Mitigation of Toxicity. J. Photochem. Photobiol. B Biol. 2020, 205, 111823. https://doi.org/10.1016/j.jphotobiol.2020.111823.Suche in Google Scholar PubMed

20. Ramalingam, B.; Khan, M. M. R.; Mondal, B.; Mandal, A. B.; Das, S. K. Facile Synthesis of Silver Nanoparticles Decorated Magnetic-Chitosan Microsphere for Efficient Removal of Dyes and Microbial Contaminants. ACS Sustain. Chem. Eng. 2015, 3 (9), 2291–2302. https://doi.org/10.1021/acssuschemeng.5b00577.Suche in Google Scholar

21. Jamjoum, H. A. A.; Umar, K.; Adnan, R.; Razali, M. R.; Mohamad Ibrahim, M. N. Synthesis, Characterization, and Photocatalytic Activities of Graphene Oxide/Metal Oxides Nanocomposites: A Review. Front. Chem. 2021, 9, 752276. https://doi.org/10.3389/fchem.2021.752276.Suche in Google Scholar PubMed PubMed Central

22. Sharma, V. K.; McDonald, T. J.; Kim, H.; Garg, V. K. Adv. Colloid Interface Sci. 2015, 225, 229. https://doi.org/10.1016/j.cis.2015.10.006.Suche in Google Scholar PubMed

23. Roy, E.; Patra, S.; Madhuri, R.; Sharma, P. K. Chem. Eng. J. 2016, 299, 244. https://doi.org/10.1016/j.cej.2016.04.051.Suche in Google Scholar

24. Fischer, A. R.; Werner, P.; Goss, K. U. Photodegradation of Malachite Green and Malachite Green Carbinol under Irradiation with Different Wavelength Ranges. Chemosphere 2011, 82, 210–214. https://doi.org/10.1016/j.chemosphere.2010.10.019.Suche in Google Scholar PubMed

25. Melo, M. J.; Nabais, P.; Vieira, M.; Araújo, R.; Otero, V.; Lopes, J.; Martín, L. Between Past and Future: Advanced Studies of Ancient Colours to Safeguard Cultural Heritage and New Sustainable Applications. Dyes Pigments 2022, 208, 110815. https://doi.org/10.1016/J.DYEPIG.2022.110815.Suche in Google Scholar

26. Guerra, E.; Gosetti, F.; Marengo, E.; Llompart, M.; Garcia-Jares, C. Study of Photostability of Three Synthetic Dyes Commonly Used in Mouthwashes. Microchem. J. 2019, 146, 776–781. https://doi.org/10.1016/J.MICROC.2019.02.002.Suche in Google Scholar

27. Liu, H.; Guo, W.; Li, Y.; He, S.; He, C. Photocatalytic Degradation of Sixteen Organic Dyes by TiO2/WO3-Coated Magnetic Nanoparticles Under Simulated Visible Light and Solar Light. J. Environ. Chem. Eng. 2018, 6, 59–67. https://doi.org/10.1016/j.jece.2017.11.063.Suche in Google Scholar

28. Thota, S.; Rao Tirukkovalluri, S.; Bojja, S. Visible Light Induced Photocatalytic Degradation of Methyl Red with Codoped Titania. J. Catal. 2014, 2014, 962419. https://doi.org/10.1155/2014/962419.Suche in Google Scholar

29. Naikwade, A. G.; Jagadale, M. B.; Kale, D. P.; Gophane, A. D.; Garadkar, K. M.; Rashinkar, G. S. Photocatalytic Degradation of Methyl Orange by Magnetically Retrievable Supported Ionic Liquid Phase Photocatalyst. ACS Omega 2020, 5, 131–144. https://doi.org/10.1021/acsomega.9b02040.Suche in Google Scholar PubMed PubMed Central

30. Rani, A.; Singh, K.; Patel, A. S.; Sharma, P. Factors Affecting Photocatalytic Degradation of Methyl Red by MoS2 Nanostructures Prepared by Hydrothermal Technique. Bull. Mater. Sci. 2023, 46, 94. https://doi.org/10.1007/s12034-023-02929-z.Suche in Google Scholar

Received: 2023-08-28
Accepted: 2024-03-04
Published Online: 2024-07-19
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0263/html?lang=de
Button zum nach oben scrollen