Startseite Deformation and Microstructure of Titanium Chips and Workpiece
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Deformation and Microstructure of Titanium Chips and Workpiece

  • Carsten Siemers EMAIL logo , Debashis Mukherji , Martin Bäker und Joachim Rösier
Veröffentlicht/Copyright: 15. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In order to improve the machinability of titanium alloys, a better understanding of the chip formation process is needed. Microstructur alanalysis of chips produced at high cutting speeds can lead to an estimate of temperatures and the deformation state in the chips if structural changes can be observed. Two-dimensional cross-sectional analyses are performed by means of optical microscopy (LM) and transmission electron microscopy (TEM). To study the deformation state of the finished workpiece, a scratch-grid method in combination with a scanning electron microscope (SEM) is used. The results of the different analyses for Ti 6A14V are presented in this paper and are compared with a finite element simulation of an orthogonal cutting process.


Carsten Siemers Institut für Werkstoffe Langer Kamp 8, D-38106 Braunschweig, Germany Fax:+49 531 391 3058

Dedicated to Professor Dr.-Ing. Günter Lange on the occasion of his 65th birthday


References

1 Donarchie, M.J. (ed.): Titanium – A Technical Guide, ASM International, Metals Park, OH (1988).Suche in Google Scholar

2 Lampman, S. (ed.): Materials Properties Handbook: Titanium Alloys, ASM International, Metals Park, OH (1994).Suche in Google Scholar

3 Hoffmeister, H.-W.; Bäker, M.; Gente, A.; Weber, T., in: Proc. 9th DAAAM Int. Symp., Napoca, Romania (1998).Suche in Google Scholar

4 Bäker, M.; Grusewski, C; Mukherji, D.; Rösier, J.; Siemers, C: Prakt. Metallogr., in press.Suche in Google Scholar

5 Banerji, S.; Krishnan, R.: Acta metall. 19 (1971) 1317.10.1016/0001-6160(71)90068-XSuche in Google Scholar

6 Blackburn, M.J.: The Science, Technology and Application of Titanium, Pergamon Press, Oxford (1970) 633.10.1016/B978-0-08-006564-9.50071-3Suche in Google Scholar

7 Oka, M.: Trans. Jpn. Inst. Met. 8 (1967) 215.10.2320/matertrans1960.8.215Suche in Google Scholar

8 Williams, J.C.: Titanium Science and Technology, Vol. 3, Plenum Press, New York (1973) 1433.Suche in Google Scholar

9 Imtronic GmbH: Anwenderdokumentation Image C, Imtronic GmbH, Berlin (1997).Suche in Google Scholar

10 Gente, A.: Personal communication.Suche in Google Scholar

11 ABAQUS/Standard User’s Manual, Version 5.8, HKS Inc., Paw tucket, USA (1998).Suche in Google Scholar

12 Hou, Z.B.; Komanduri, R.: Int. I. Mechan. Sci. 39 (1997) 1273.10.1016/S0020-7403(97)00017-9Suche in Google Scholar

13 Bäker, M.; Rösier, I.; Siemers, C: In preparation.Suche in Google Scholar

14 Bäker, M.; Rösier, I.; Siemers, C, in: Proc. Materials Week, Munich (2000).Suche in Google Scholar

Received: 2001-03-31
Published Online: 2022-02-15

© 2001 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Günter Lange 65 Years
  4. Aufsätze/Articles
  5. Deformation and Microstructure of Titanium Chips and Workpiece
  6. Eigenspannungsabbau in zügig und zyklisch beanspruchten Schweißverbindungen
  7. Bruchmechanische Nachweise zur Stahlgütewahl für moderne Feinkornbaustähle
  8. Experimental Analysis of the Interaction of “Hot” and “Cold” Volume Elements during Thermal Fatigue of a Cooled Component Made from AISI 3161 Steel
  9. Microstructure and Cyclic Deformation Behavior of Wheel and Tire Steels in Technically Relevant Heat Treatments
  10. Dehnratenabhängige Beschreibung der Fließkurven für erhoöhte Temperaturen
  11. Ein einfaches Modell für die Kinetik der Rekristallisation
  12. Determination of the Elastic Modulus of Wear Resistant Coatings by Quantitative Acoustic Microscopy
  13. Processing, Microstructure and Properties of Nb–TiO2 ODS Materials for Surgical Implants
  14. Influence of Surface Treatment on the Pitting Corrosion Behaviour of High Alloyed Stainless Steels in a Chloride Solution
  15. Unfall durch Drahtseilriss in einer Tunnelbaustelle
  16. Synthesis of Nanocrystalline B2 Structured (Ru, Ir) Al in the Ternary Ru–Al–Ir System by Mechanical Alloying and its Thermal Stability
  17. Preparation of Ca-α-sialon Ceramics with Compositions along the Si3N4-1/2 Ca3N2:3AIN Line
  18. SiC–Si3N4 Nanocomposite Prepared by the Addition of SiO2 + C
  19. Ceramics in the Si3N4–ZrO2–CeO2 System: Phase Composition Changes and Properties
  20. The Al–Ca System, Part 1: Experimental Investigation of Phase Equilibria and Crystal Structures
  21. The Al–Ca System, Part 2: Calorimetrie Measurements and Thermodynamic Assessment
  22. Phase Relationships of the Gd-Zn System
  23. Ableitung des Kristallisationspfades in ternären Gusslegierungen
  24. Bildanalyse komplexer Werkstoffgefüge durch Texturanalyse und Korrelation mit den Eigenschaften durch neuronale Netze
  25. Grain Growth in the Nanocrystalline W–Cu and Cu–Pb Composite Powders Prepared by Mechanical Alloying
  26. Toughening and Strengthening Response in Ni3Al-Bonded Titanium Carbide Cermets
  27. Creep Behavior of γ-TiAl-Based Alloys with Fully Lamellar Microstore
  28. Elevated Temperature Deformation of P/M Dispersion - Strengthened Copper and Aluminium
  29. Evolution of the Microstructure during Hot Working of Gamma-Based TiAl Alloys
  30. Interface Motion of β-Silicon Nitride in a Liquid Phase
  31. Internal Friction and Creep of Titanium Aluminides with Different Microstructure
  32. Mitteilungen/Notifications
  33. Personen
  34. Conferences
Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0157/html
Button zum nach oben scrollen