Home The Al–Ca System, Part 2: Calorimetrie Measurements and Thermodynamic Assessment
Article
Licensed
Unlicensed Requires Authentication

The Al–Ca System, Part 2: Calorimetrie Measurements and Thermodynamic Assessment

  • D. Kevorkov , R. Schmid-Fetzer EMAIL logo , A. Pisch , F. Hodaj and C. Colinet
Published/Copyright: February 15, 2022
Become an author with De Gruyter Brill

Abstract

Drop solution calorimetry was performed to determine the enthalpies of formation of the binary Al2Ca and Al3Ca8 phases and the partial enthalpy of mixing at infinite dilution of calcium in liquid aluminum. A consistent thermodynamic model of the Al–Ca system was constructed for the four stoichiometric compounds Al4Ca, Al2Ca, AlCa and Al3Ca8 and for the liquid phase with a sub-subregular solution model. Optimization of the thermodynamic parameters using the Calphad method was done by incorporating all available experimental data on phase equilibria, enthalpies of formation and mixing and the activity coefficients in the liquid. A consistent description of the phase diagram and thermodynamic properties is presented which is well supported by the experimental data. The Ca-rich part of the phase diagram differs substantially from previous reports, mainly because of the two newly discovered phases AlCa and Al3Ca8.


Prof. Dr. R. Schmid-Fetzer Institute of Metallurgy Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld, Germany Fax:+49 5323 723120

  1. This work was supported by the German Research Council (DFG) in the framework of the thrust German research project SFB390 “Magnesium Technology” at the Technical University of Clausthal.

References

08Don Donski, L.: Z. Anorg. Chem. 57 (1908) 201.10.1002/zaac.19080570109Search in Google Scholar

28Boz Bozza, G.; Sonnino, C.: Giorn. Chim. Ind. Appl. 10 (1928) 443.10.1148/10.5.443aSearch in Google Scholar

28Mat Matsuyama, K.: Sci. Rep. Tohoku Univ. 17 (1928) 783.Search in Google Scholar

48Red Redlich, O.; Kister, A.T.: Indust. Eng. Chem. 40 (1948) 345.10.1021/ie50458a036Search in Google Scholar

59Koc Kocherov, P.V.; Gertman, Yu.M.; Gel’d, P.V.: Russ. J. Inorg. Chem. 4(5) (1959) 503.Search in Google Scholar

73Vak Vakhobov, A.V.; Vigrodovich, V.N.; Dzhuraev, T.C.: Obschch. Zak. Str. Diagram. Sost. Met. Sist (1973) 98.Search in Google Scholar

75Den Deneuville, J.L.: Ph. D. Thesis, INP Grenoble (1975).Search in Google Scholar

75Sch Schiirmann, E.; Fünders, P.; Litterscheidt, H.: Arch. Eisenhiit-tenwes. 46 (1975) 473.10.1002/srin.197503664Search in Google Scholar

77Pre Preto, S.K.; Ross, L.E.; Martin, A.E.; Roche, M.F., in: J.D. Mclntyre, S. Srinivasson, F.G. Will (eds.), Proc. Symp. on Electrode Materials and Process for Energy Conversion and Storage, Vol. 77(6), Electrochemical Society, Princeton, NJ (1977) 241 (quoted from 88Itk).Search in Google Scholar

81Vel Veleckis, E.: J. Less-Common Met. 80 (1981) 241.10.1016/0022-5088(81)90098-9Search in Google Scholar

82Not1 Notin, M.; Gachon, J.C.; Hertz, J.: J. Chem. Thermodynamics 14 (1982) 425.10.1016/0021-9614(82)90134-3Search in Google Scholar

82Not2 Notin, M.; Hertz, J.: CALPHAD 6 (1982) 49.10.1016/0364-5916(82)90015-3Search in Google Scholar

83Som Sommer, F.; Lee, J.-J.; Predel B.: Z. Metallkd. 74 (1983) 100.10.1515/ijmr-1983-740209Search in Google Scholar

88Itk Itkin, V.P.; Alcock, C.B.; van Ekeren, P.J.; Oonk, H.A.J.: Bull. Alloy Phase Diagrams 9(1988) 652.10.1007/BF02883160Search in Google Scholar

88Jac Jacob, K.T.; Srikanth, S.; Waseda, Y.: Trans. Jpn. Inst. Met. 29 (1988)50.10.2320/matertrans1960.29.50Search in Google Scholar

91Din Dinsdale, A.T.: CALPHAD 15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar

94Ang Anglezio, J.C.; Servant, C.; Ansara, I.: CALPHAD 18 (1994) 273.10.1016/0364-5916(94)90034-5Search in Google Scholar

00Pan PANDAT Software for Multicomponent Phase Diagram Calculation is available from Computherm LLC, 437 S. Yellowstone Drive, Suite 217, Madison, WI43719, Wisconsin, USA (2000).Search in Google Scholar

01Kev Kevorkov, D.; Schmid-Fetzer, R.: Z. Metallkd. 92 (2001) 946.10.1515/ijmr-2001-0172Search in Google Scholar

Received: 2001-03-20
Published Online: 2022-02-15

© 2001 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Günter Lange 65 Years
  4. Aufsätze/Articles
  5. Deformation and Microstructure of Titanium Chips and Workpiece
  6. Eigenspannungsabbau in zügig und zyklisch beanspruchten Schweißverbindungen
  7. Bruchmechanische Nachweise zur Stahlgütewahl für moderne Feinkornbaustähle
  8. Experimental Analysis of the Interaction of “Hot” and “Cold” Volume Elements during Thermal Fatigue of a Cooled Component Made from AISI 3161 Steel
  9. Microstructure and Cyclic Deformation Behavior of Wheel and Tire Steels in Technically Relevant Heat Treatments
  10. Dehnratenabhängige Beschreibung der Fließkurven für erhoöhte Temperaturen
  11. Ein einfaches Modell für die Kinetik der Rekristallisation
  12. Determination of the Elastic Modulus of Wear Resistant Coatings by Quantitative Acoustic Microscopy
  13. Processing, Microstructure and Properties of Nb–TiO2 ODS Materials for Surgical Implants
  14. Influence of Surface Treatment on the Pitting Corrosion Behaviour of High Alloyed Stainless Steels in a Chloride Solution
  15. Unfall durch Drahtseilriss in einer Tunnelbaustelle
  16. Synthesis of Nanocrystalline B2 Structured (Ru, Ir) Al in the Ternary Ru–Al–Ir System by Mechanical Alloying and its Thermal Stability
  17. Preparation of Ca-α-sialon Ceramics with Compositions along the Si3N4-1/2 Ca3N2:3AIN Line
  18. SiC–Si3N4 Nanocomposite Prepared by the Addition of SiO2 + C
  19. Ceramics in the Si3N4–ZrO2–CeO2 System: Phase Composition Changes and Properties
  20. The Al–Ca System, Part 1: Experimental Investigation of Phase Equilibria and Crystal Structures
  21. The Al–Ca System, Part 2: Calorimetrie Measurements and Thermodynamic Assessment
  22. Phase Relationships of the Gd-Zn System
  23. Ableitung des Kristallisationspfades in ternären Gusslegierungen
  24. Bildanalyse komplexer Werkstoffgefüge durch Texturanalyse und Korrelation mit den Eigenschaften durch neuronale Netze
  25. Grain Growth in the Nanocrystalline W–Cu and Cu–Pb Composite Powders Prepared by Mechanical Alloying
  26. Toughening and Strengthening Response in Ni3Al-Bonded Titanium Carbide Cermets
  27. Creep Behavior of γ-TiAl-Based Alloys with Fully Lamellar Microstore
  28. Elevated Temperature Deformation of P/M Dispersion - Strengthened Copper and Aluminium
  29. Evolution of the Microstructure during Hot Working of Gamma-Based TiAl Alloys
  30. Interface Motion of β-Silicon Nitride in a Liquid Phase
  31. Internal Friction and Creep of Titanium Aluminides with Different Microstructure
  32. Mitteilungen/Notifications
  33. Personen
  34. Conferences
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0173/html
Scroll to top button