Home SiC–Si3N4 Nanocomposite Prepared by the Addition of SiO2 + C
Article
Licensed
Unlicensed Requires Authentication

SiC–Si3N4 Nanocomposite Prepared by the Addition of SiO2 + C

  • P. Šajgalík EMAIL logo , M. Hnatko , Z. Lenčéš , P. Warbichler and F. Hofer
Published/Copyright: February 15, 2022
Become an author with De Gruyter Brill

Abstract

Paper deals with the low cost route of the preparation of SiC/Si3N4 nanocomposite. It is shown that SiC nanoinclusions distributed within the Si3N4 matrix can be produced by carbothermal reduction of fine SiO2 particles added into a starting mixture. The amount of SiC nanoinclusions can be adjusted by the appropriate amount of SiO2 + C additives. Almost full density of the final composite was achieved by hot-pressing at 1750 °C using a “special” heating regime allowing the outgasing of CO as a product of carbothermal reduction.


Institute of Inorganic Chemistry Dúbravská Cesta 9, SK-84236 Bratislava, Slovakia Fax: +421259410444

Dedicated to Professor Dr. Dr. h. c. mult. Günter Petzow, a man who helped me to open the door to the marvelous world of ceramics (P.Š.)


  1. The present work was partly supported by the Slovak Grant Agency VEGA, project 2/1033. P. Š. acknowledges also the Alexander von Humboldt Foundation for financial support during his stay at the University of Karlsruhe where a part of the work was carried out.

References

1 Niihara, K.:J. Jpn. Ceram. Soc. 99 (1991) 974.10.2109/jcersj.99.974Search in Google Scholar

2 Niihara, K.; Suganuma, K.; Nakahira, A.; Izaki, K.:J. Mater. Sci. Lett.9 (1990) 598.10.1007/BF00725889Search in Google Scholar

3 Chiang, Y.-M.; Smyth, I.P.; Terwilliger, C.D.; Petuskey, W.T.; Eastman, J.A.:Nanostructured Mater. 1 (1992) 235.10.1016/0965-9773(92)90101-3Search in Google Scholar

4 Allaire, F.; Langlois, R.:J. Mater. Sci. 27 (1992) 1265.10.1007/BF01142035Search in Google Scholar

5 Sasaki, G.; Suganuma, K.; Fujita, T.; Hiraga, K.; Niihara, K.:Mater. Res. Symp. Proc. 287 (1993) 335.10.1557/PROC-287-335Search in Google Scholar

6 Herrmann, M.; Schubert, C.; Rendtel, A.; Hübner, H.: J. Am. Ceram. Soc. 81 (1998) 1094.10.1111/j.1151-2916.1998.tb02456.xSearch in Google Scholar

7 Rendtel, A.; Hübner, H.; Herrmann, M.; Schubert, C.:J. Am. Ceram. Soc. 81 (1998) 1109.10.1111/j.1151-2916.1998.tb02457.xSearch in Google Scholar

8 Rendtel, P.; Rendtel, A.; Hübner, H.; Klemm, H.; Herrmann, M.:J. Eur. Ceram. Soc.19 (1999) 217.10.1016/S0955-2219(98)00192-7Search in Google Scholar

9 Šajgalík, P.; Dusza, J.; Hofer, E.; Warbichler, P.; Reece, M.; Boden, G.; Kozánková, J.:J. Mater. Sci. Lett. 15 (1993) 72.10.1007/BF01855618Search in Google Scholar

10 Šajgalík, P.; Hnatko, M.; Lenčéš, Z.:Key Eng. Mater. 175– 176 (2000) 289.10.4028/www.scientific.net/KEM.175-176.289Search in Google Scholar

11 Dusza, J.; Šajgalík, P.; Steen, M.:Key Eng. Mater. 175– 176 (2000)311.10.4028/www.scientific.net/KEM.175-176.311Search in Google Scholar

12 Dusza, J.; Šajgalík, P.; Steen, M.:T J. Am. Ceram. Soc. 82 (1999) 3613.10.1111/j.1151-2916.1999.tb02287.xSearch in Google Scholar

13 Šajgalík, P.; Hnatko, M.; Lofaj, F.; Hvizdoš, P.; Dusza, J.; Warbichler, P.; Hofer, F.; Riedel, R.; Lecomte, E.; Hoffmann, M.J.:J. Eur.Ceram. Soc. 20 (2000) 453.10.1016/S0955-2219(99)00176-4Search in Google Scholar

14 Hojo, J.; Miyachi, K.; Okabe, Y.; Kato, A.:J. Am. Ceram. Soc. 66 (1983)114.10.1111/j.1151-2916.1983.tb10603.xSearch in Google Scholar

15 Hnatko, M.; Šajgalík, P.; Lenčéš, Z.; Salamon, D.; Monteverde, F. :J. Eur. Ceram. Soc, in press.Search in Google Scholar

16 Watari, K.; Kawamoto, M.; Ishizaki, K.:Mater. Sci. Eng. A109 (1989) 89.10.1016/0921-5093(89)90569-8Search in Google Scholar

17 Miyata, M.; Sawai, Y; Yasutomi, Y.; Kanai, T.:J. Ceram. Soc. Jap. 106 (1998) 815.10.2109/jcersj.106.815Search in Google Scholar

18 Levin, E.M.; Robbins, C.R.; McMurdie, H.F., in: Reser M.K. (ed.), Phase Diagrams for Ceramists, American Ceramic Society, Columbus, OH 1969, Fig. 2388.Search in Google Scholar

19 Krstic, V. D.:J. Am. Ceram. Soc. 75 (1992) 170.10.1111/j.1151-2916.1992.tb05460.xSearch in Google Scholar

20 JANAF, Thermochemical Tables 14, Suppl. 1 (1985).Search in Google Scholar

21 Ličko, T.; Šajgalík, P.:Ceramics – Silikaty35 (1991) 127.Search in Google Scholar

22 Šajgalík, P.; Hnatko, M.; Lenčíš, Z.:Proc. Int. Conf. on Ceramic Materials and Components for Engines, Goslar, in press.Search in Google Scholar

Received: 2001-04-20
Published Online: 2022-02-15

© 2001 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Günter Lange 65 Years
  4. Aufsätze/Articles
  5. Deformation and Microstructure of Titanium Chips and Workpiece
  6. Eigenspannungsabbau in zügig und zyklisch beanspruchten Schweißverbindungen
  7. Bruchmechanische Nachweise zur Stahlgütewahl für moderne Feinkornbaustähle
  8. Experimental Analysis of the Interaction of “Hot” and “Cold” Volume Elements during Thermal Fatigue of a Cooled Component Made from AISI 3161 Steel
  9. Microstructure and Cyclic Deformation Behavior of Wheel and Tire Steels in Technically Relevant Heat Treatments
  10. Dehnratenabhängige Beschreibung der Fließkurven für erhoöhte Temperaturen
  11. Ein einfaches Modell für die Kinetik der Rekristallisation
  12. Determination of the Elastic Modulus of Wear Resistant Coatings by Quantitative Acoustic Microscopy
  13. Processing, Microstructure and Properties of Nb–TiO2 ODS Materials for Surgical Implants
  14. Influence of Surface Treatment on the Pitting Corrosion Behaviour of High Alloyed Stainless Steels in a Chloride Solution
  15. Unfall durch Drahtseilriss in einer Tunnelbaustelle
  16. Synthesis of Nanocrystalline B2 Structured (Ru, Ir) Al in the Ternary Ru–Al–Ir System by Mechanical Alloying and its Thermal Stability
  17. Preparation of Ca-α-sialon Ceramics with Compositions along the Si3N4-1/2 Ca3N2:3AIN Line
  18. SiC–Si3N4 Nanocomposite Prepared by the Addition of SiO2 + C
  19. Ceramics in the Si3N4–ZrO2–CeO2 System: Phase Composition Changes and Properties
  20. The Al–Ca System, Part 1: Experimental Investigation of Phase Equilibria and Crystal Structures
  21. The Al–Ca System, Part 2: Calorimetrie Measurements and Thermodynamic Assessment
  22. Phase Relationships of the Gd-Zn System
  23. Ableitung des Kristallisationspfades in ternären Gusslegierungen
  24. Bildanalyse komplexer Werkstoffgefüge durch Texturanalyse und Korrelation mit den Eigenschaften durch neuronale Netze
  25. Grain Growth in the Nanocrystalline W–Cu and Cu–Pb Composite Powders Prepared by Mechanical Alloying
  26. Toughening and Strengthening Response in Ni3Al-Bonded Titanium Carbide Cermets
  27. Creep Behavior of γ-TiAl-Based Alloys with Fully Lamellar Microstore
  28. Elevated Temperature Deformation of P/M Dispersion - Strengthened Copper and Aluminium
  29. Evolution of the Microstructure during Hot Working of Gamma-Based TiAl Alloys
  30. Interface Motion of β-Silicon Nitride in a Liquid Phase
  31. Internal Friction and Creep of Titanium Aluminides with Different Microstructure
  32. Mitteilungen/Notifications
  33. Personen
  34. Conferences
Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0170/html
Scroll to top button