Home Grain Growth in the Nanocrystalline W–Cu and Cu–Pb Composite Powders Prepared by Mechanical Alloying
Article
Licensed
Unlicensed Requires Authentication

Grain Growth in the Nanocrystalline W–Cu and Cu–Pb Composite Powders Prepared by Mechanical Alloying

  • In Hyung Moon EMAIL logo , Sung-Soo Ryu , Soon-Wook Kim , Dong Mook Won and Won Suck Jang
Published/Copyright: February 15, 2022
Become an author with De Gruyter Brill

Abstract

The thermal behavior of the nanocrystalline W–Cu and Cu–Pb powders was investigated in order to gain thermal stability information for further application and also to elucidate the grain growth kinetics in an immiscible alloy system. The nanocrystalline alloy powders were prepared by mechanical alloying (MA) and characterized. Thermal behavior of this nanocrystalline alloy was analysed by DSC, XRD, SEM, TEM and EXAFS. The time exponent n and the activation energy for grain growth were determined from the grain size data. The nanocrystalline W, Cu and Pb have revealed lower n values than the polycrystalline ones. The activation energy of the nanocrystalline W, Cu, and Pb grain growth in MAW–Cu and Cu–Pb powders is 186.5 ± 1.0, 55.6 ±10.5 and 42.0 ± 3.9 kJ/mol, respectively. The melting point suppression of Pb crystalline embedded in Cu matrix in MA Cu–Pb powders can be estimated. On the basis of the grain growth parameter obtained in this study and available data in the literature, the grain growth features and kinetics in the nonequilibrium state of the immiscible alloy system are discussed.


Prof. Dr. I.H. Moon Dept. of Materials Engineering, Hanyang University Seoul 133–791, Korea Fax:+8222281 3391

Dedicated to Professor Dr. Dr. h. c. mult. Günter Petzow on the occasion of his 75th birthday


References

1 Aboud, T.; Weiss, B.-Z.; Chaim, R.: Nanostructured Mater. 6 (1995)405–408.10.1016/0965-9773(95)00082-8Search in Google Scholar

2 Kim, J.C.; Moon, I.H.: ibid. 10 (1998) 283–290.10.1016/S0965-9773(98)00065-8Search in Google Scholar

3 Gaffet, E.; Louison, C; Harmelin, M.; Faudot, F.: Mater. Sci. Eng. A 134 (1991) 1380-1384.10.1016/0921-5093(91)90995-YSearch in Google Scholar

4 Kim, J.C.; Ko, B.-H.; Moon, I.H.: Nanostructured Mater. 7 (1996) 887–903.10.1016/S0965-9773(96)00059-1Search in Google Scholar

5 Gleiter, H.: Acta Mater. 48 (2000) 1 –29.10.1016/S1359-6454(99)00285-2Search in Google Scholar

6 Gleiter, H.: Nanostructured Mater. 1 (1992) 1 –19.10.1016/0965-9773(92)90045-YSearch in Google Scholar

7 Koch, C.C.: ibid. 2 (1993) 109–115.10.1016/0965-9773(93)90016-5Search in Google Scholar

8 German, R.M.; Hens, K.F.; Johnson, T.L.: Int. J. Powder Metall. 30 (1994) 205–215.Search in Google Scholar

9 Massalski, T.B. (Editor-in-Chief): Binary Alloy Phase Diagrams, ASM, Metals Park, OH (1990) 1452 and 1503.Search in Google Scholar

10 Moon, I.H.; Kim, E.P.; Petzow, G.: Powder Metall. 41 (1998) 51 –57.10.1179/pom.1998.41.1.51Search in Google Scholar

11 Shen, T.D.; Koch, C.C.: Mater. Sci. Forum 179–181 (1995) 17–25.10.4028/www.scientific.net/MSF.179-181.17Search in Google Scholar

12 Klug, H.P.; Alexander, L.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley, New York (1974).Search in Google Scholar

13 Cullity, B.D.: Elements of X-ray Diffraction, Addison-Wesley, New York (1978).Search in Google Scholar

14 Malow, T.R.; Koch, C.C.: Acta Mater. 45 (1997) 2177–2186.10.1016/S1359-6454(96)00300-XSearch in Google Scholar

15 Bru, P. Le; Gaffet, E.; Frogen, L.; Delaey, L.: Scripta Metall. Mater. 26 (1992) 1743–1748.10.1016/0956-716X(92)90545-PSearch in Google Scholar

16 Lee, S.; Hong, M.H.; Kim, E.P.; Song, H.S.; Noh, J.U.; Kim, Y.U.: J. The Korean Inst. of Met. Mater. 31 (1993) 234–243.Search in Google Scholar

17 Miedema, A.R.: J. Less-Common Met. 41 (1975) 283–298.10.1016/0022-5088(75)90034-XSearch in Google Scholar

18 Ryu, S.S.; Lee, H.; Kim, J.C.; Kim, Y.D.; Moon, I.H., in: W.D. Cho, H.Y. Sohn (eds.), Value Addition Metallurgy, TMS, San Antonio, CA (1998) 287–295.Search in Google Scholar

19 Iordache, M.C.; Whang, S.H.; Ziao, Z.; Wang, Z.M.: Nanostructured Mater. 11 (1999) 1343–1349.10.1016/S0965-9773(00)00427-XSearch in Google Scholar

20 Geguzin; Ya.Y.; Kibets, V.I.: Fiz. Metall. Metalloved. 36 (1973) 1043.Search in Google Scholar

21 Moon, I.H.; Oh, S.T.; Kim, Y.L.: J. Less-Common Met. 153 (1989) 275–283.10.1016/0022-5088(89)90122-7Search in Google Scholar

22 Ganapathi, S.K.; Owen, D.M.; Chokshi, A.H.: Scripta Metall. Mater. 25 (1991) 2699–2704.10.1016/0956-716X(91)90142-NSearch in Google Scholar

23 Reed-Hill, R.E.: Physical Metallurgy Principle, PWS, Boston, MA (1973).Search in Google Scholar

24 Marlow, T.R.; Koch, C.C., in: D.L Bourell (ed.), Synthesis and Processing of Nanocrystalline Powder, TMS, Warrendale, PA (1996) 33–44.Search in Google Scholar

25 Kumpmann, A; Günter B.; Künze, H.D.: Mater. Sci. Eng. A 168 (1993)165–169.10.1016/0921-5093(93)90722-QSearch in Google Scholar

26 Dickenscheid, W.; Birringer, W.; Gleiter, H.; Kanert, O.; Michel, B.; Günter, B.: Solid State Com. 79 (1991) 683–686.10.1016/0038-1098(91)90613-ZSearch in Google Scholar

27 Kaur, I.; Gust, W.; Kozna, L.: Handbook of Grain and Inter-phase Boundary Diffusion Data, Vol. 1, Ziegler Press, Stuttgart (1989).Search in Google Scholar

28 Vieregge, K.; Gupta, D., in: CA. Crowson et al. (eds.), Proc. Symp. on Tungsten and Tungsten Alloys-Recent Advances, TMS, Warrendale, PA (1991) 231–243.Search in Google Scholar

29 Lee, J.S.; Minkwitz, C.; Herzig, Ch.: Phys. Stat. Sol. (b) 202 (1997)931–940.10.1002/1521-3951(199708)202:2<931::AID-PSSB931>3.0.CO;2-OSearch in Google Scholar

30 German, R.M.; Munier, Z.A.: Metall. Trans. A 7 (1976) 1873–1877.10.1007/BF02654983Search in Google Scholar

31 Moon, I.H.; Won, D.M., in: Stojanovic et al. (eds.), Advanced Science and Technology of Sintering, Kluwer Academic/Plenum, New York (1999) 41–54.10.1007/978-1-4419-8666-5_4Search in Google Scholar

32 Johnson, J.L.; German, R.M.: Metall. Trans. A 27 (1996) 441–450.10.1007/BF02648421Search in Google Scholar

33 Schatt, W.: Sintervorgänge, VDI Verlag, Düsseldorf (1992) 215–217.Search in Google Scholar

34 Kissinger, H.E.: Anal. Chem. 29 (1957) 1702–1706.10.1021/ac60131a045Search in Google Scholar

35 Geguzin, Ja.E.: Physik des Sinterns, VEB Verlag, Leipzig (1973) 15.Search in Google Scholar

36 Allen, G.L.; Bayles, R.A.; Gile, W.W.; Jesser, W.A.: Thin Solid Films, 144(1986)287–308.10.1016/0040-6090(86)90422-0Search in Google Scholar

37 Saka. H.; Nishikawa, Y.; Imwa, T.: Phil. Mag. A 57 (1988) 895–906.10.1080/01418618808204524Search in Google Scholar

38 Allen, G.L.; Gile, W.; Jesser, W.J.: Acta Metall. 28 (1980) 1695–1701.10.1016/0001-6160(80)90022-XSearch in Google Scholar

39 Sheng, H.W.; Lu, K.; Ma, E: ibid 46 (1998) 5195–5205.10.1016/S1359-6454(98)00108-6Search in Google Scholar

40 Murr, L.E.: Interfacial Phenomena in Metals and Alloys, Addison Wesley, Reading, MA (1975).Search in Google Scholar

41 Rao, G.; Zhang, D.B.; Wynblatt, P.: Acta Metall. 41 (1993)3331–3340.10.1016/0956-7151(93)90062-WSearch in Google Scholar

Received: 2001-04-20
Published Online: 2022-02-15

© 2001 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Günter Lange 65 Years
  4. Aufsätze/Articles
  5. Deformation and Microstructure of Titanium Chips and Workpiece
  6. Eigenspannungsabbau in zügig und zyklisch beanspruchten Schweißverbindungen
  7. Bruchmechanische Nachweise zur Stahlgütewahl für moderne Feinkornbaustähle
  8. Experimental Analysis of the Interaction of “Hot” and “Cold” Volume Elements during Thermal Fatigue of a Cooled Component Made from AISI 3161 Steel
  9. Microstructure and Cyclic Deformation Behavior of Wheel and Tire Steels in Technically Relevant Heat Treatments
  10. Dehnratenabhängige Beschreibung der Fließkurven für erhoöhte Temperaturen
  11. Ein einfaches Modell für die Kinetik der Rekristallisation
  12. Determination of the Elastic Modulus of Wear Resistant Coatings by Quantitative Acoustic Microscopy
  13. Processing, Microstructure and Properties of Nb–TiO2 ODS Materials for Surgical Implants
  14. Influence of Surface Treatment on the Pitting Corrosion Behaviour of High Alloyed Stainless Steels in a Chloride Solution
  15. Unfall durch Drahtseilriss in einer Tunnelbaustelle
  16. Synthesis of Nanocrystalline B2 Structured (Ru, Ir) Al in the Ternary Ru–Al–Ir System by Mechanical Alloying and its Thermal Stability
  17. Preparation of Ca-α-sialon Ceramics with Compositions along the Si3N4-1/2 Ca3N2:3AIN Line
  18. SiC–Si3N4 Nanocomposite Prepared by the Addition of SiO2 + C
  19. Ceramics in the Si3N4–ZrO2–CeO2 System: Phase Composition Changes and Properties
  20. The Al–Ca System, Part 1: Experimental Investigation of Phase Equilibria and Crystal Structures
  21. The Al–Ca System, Part 2: Calorimetrie Measurements and Thermodynamic Assessment
  22. Phase Relationships of the Gd-Zn System
  23. Ableitung des Kristallisationspfades in ternären Gusslegierungen
  24. Bildanalyse komplexer Werkstoffgefüge durch Texturanalyse und Korrelation mit den Eigenschaften durch neuronale Netze
  25. Grain Growth in the Nanocrystalline W–Cu and Cu–Pb Composite Powders Prepared by Mechanical Alloying
  26. Toughening and Strengthening Response in Ni3Al-Bonded Titanium Carbide Cermets
  27. Creep Behavior of γ-TiAl-Based Alloys with Fully Lamellar Microstore
  28. Elevated Temperature Deformation of P/M Dispersion - Strengthened Copper and Aluminium
  29. Evolution of the Microstructure during Hot Working of Gamma-Based TiAl Alloys
  30. Interface Motion of β-Silicon Nitride in a Liquid Phase
  31. Internal Friction and Creep of Titanium Aluminides with Different Microstructure
  32. Mitteilungen/Notifications
  33. Personen
  34. Conferences
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0177/html
Scroll to top button