Home Creep Behavior of γ-TiAl-Based Alloys with Fully Lamellar Microstore
Article
Licensed
Unlicensed Requires Authentication

Creep Behavior of γ-TiAl-Based Alloys with Fully Lamellar Microstore

  • Anita Chatterjee , Helmut Clemens , Heinrich Mecking , Gerhard Dehm EMAIL logo and Eduard Arzt
Published/Copyright: February 15, 2022
Become an author with De Gruyter Brill

Abstract

Recent investigations have demonstrated that the interface spacing in fully lamellar microstructures has a major influence on the creep behavior of γ-TiAl-based alloys. In this paper, the dependence of the creep properties on interface spacing in fully lamellar Ti-46.5 at.% Al-4 at.% (Cr, Nb,Ta, B) sheet material was studied. Creep tests were conducted over a temperature range of 700 to 800 °C and at stresses between 100 and 260 MPa. The results indicate that the primary creep strain as well as the minimum creep rate decrease with decreasing interface spacing. A model which considers the limitation of the free dislocation path by stored dislocations as well as by geometrical obstacles was applied to explain the role of the interface spacing on both the primary creep strain and secondary creep rate. The applicability of the model has been verified by comparing calculated creep curves with experimentally obtained ones.


Dr. G. Dehm Max-Planck-Institut für Metallforschung Seestr. 92, D-70174 Stuttgart, Germany Fax:+49711 2095 120

Dedicated to Professor Dr. Dr. h. c. mult. Günter Petzow on the occasion of his 75th birthday


  1. The authors thank Plansee AG (Reutte, Austria) for providing sheet material and excellent technical assistance.

References

1 Parthasarathy, TA.; Keller, M.; Mendiratta, M.G.: Scripta Mater. 37 (1998) 1025.10.1016/S1359-6462(98)00014-1Search in Google Scholar

2 Maruyama, K.; Yamamoto, R.; Nakakuki, H.; Fujitsuna, N.: Mater. Sei. Eng. A 239–240 (1997) 419.10.1016/S0921-5093(97)00612-6Search in Google Scholar

3 Crofts, P.D.; Bowen, P.; Jones, I.P.: Scripta Mater. 35 (1996) 1391.10.1016/S1359-6462(96)00323-5Search in Google Scholar

4 Chen, W.R.; Triantafillou J.; Beddoes, J.; Zhao, L.: Intermetallics 7 (1999) 171.10.1016/S0966-9795(98)00019-3Search in Google Scholar

5 Estrin, Y; Mecking, H.: Acta Metall. 32 (1984) 57.10.1016/0001-6160(84)90202-5Search in Google Scholar

6 Klöwer, J.; Sauthoff, G.: Z. Metallkd. 83 (1992) 699.10.1515/ijmr-1992-830911Search in Google Scholar

7 Chatterjee, A.; Mecking, H.; Arzt, E.; Clemens, H.: Mater. Sci. Eng. A (2000), in press.Search in Google Scholar

8 Chatterjee, A.: Ph. D. Thesis, University of Stuttgart, Stuttgart, Germany (2001).Search in Google Scholar

9 Clemens, H.; Kestler, H.: Adv. Eng. Mater. 9 (2000) 551.10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-USearch in Google Scholar

10 Inkson, B; Clemens, H., in: E.P George et al. (eds.), High-Temperature Ordered Intermetallic Alloys VIII, MRS, Pittsburgh, PA (1999) KK3.12.1–6.Search in Google Scholar

11 Chatterjee, A.; Bolay, U.; Sattler, U.; Clemens, H., in: D.G. Morris et al. (eds.), Intermetallic s and Superalloys, Wiley-VCH, Weinheim (2000) 233.10.1002/3527607285.ch40Search in Google Scholar

12 Appel, F.; Wagner, R.: Mater. Sci. Eng. R 22 (1998) 187.10.1016/S0927-796X(97)00018-1Search in Google Scholar

13 Weller, M.; Chatterjee, A.; Haneczok, G.; Appel, F.; Clemens, H., in: J. Schneibel et al. (eds.), High-Temperature Ordered Intermetallic Alloys IX, MRS, Pittsburgh, PA (2001), in press.Search in Google Scholar

14 Herzig, C; Przeorski T; Mishin, Y: Intermetallics 7 (1999)389.10.1016/S0966-9795(98)00117-4Search in Google Scholar

15 Chatterjee, A.; Dehm. G.; Scheu, C; Clemens, H.: Z. Metallkd. 91 (2000) 755.10.1515/ijmr-2000-910908Search in Google Scholar

16 Appel, F; Oehring, M.; Ennis, P.J., in: Y-W Kim et al. (eds.), Gamma Titanium Aluminid. 1999, TMS, Warrendale, PA (1999) 603.Search in Google Scholar

17 Kauffman, F.: Diploma Thesis, University of Stuttgart, (1999).Search in Google Scholar

18 Estrin, Y; Mecking, H.: Scripta Metall. 19 (1985) 451.10.1016/0036-9748(85)90112-7Search in Google Scholar

19 Kad, S.; Fraser, D.: Phil. Mag. A 69 (1994) 689.10.1080/01418619408242511Search in Google Scholar

20 Estrin, Y: Habilitation Thesis, TU Hamburg-Harburg (1986).Search in Google Scholar

21 Ramanujan, R.V.; Maziasz, P.J.; Liu, CT.: Acta Mater. 44 (1996) 2611.10.1016/1359-6454(95)00402-5Search in Google Scholar

Received: 2001-03-20
Published Online: 2022-02-15

© 2001 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Günter Lange 65 Years
  4. Aufsätze/Articles
  5. Deformation and Microstructure of Titanium Chips and Workpiece
  6. Eigenspannungsabbau in zügig und zyklisch beanspruchten Schweißverbindungen
  7. Bruchmechanische Nachweise zur Stahlgütewahl für moderne Feinkornbaustähle
  8. Experimental Analysis of the Interaction of “Hot” and “Cold” Volume Elements during Thermal Fatigue of a Cooled Component Made from AISI 3161 Steel
  9. Microstructure and Cyclic Deformation Behavior of Wheel and Tire Steels in Technically Relevant Heat Treatments
  10. Dehnratenabhängige Beschreibung der Fließkurven für erhoöhte Temperaturen
  11. Ein einfaches Modell für die Kinetik der Rekristallisation
  12. Determination of the Elastic Modulus of Wear Resistant Coatings by Quantitative Acoustic Microscopy
  13. Processing, Microstructure and Properties of Nb–TiO2 ODS Materials for Surgical Implants
  14. Influence of Surface Treatment on the Pitting Corrosion Behaviour of High Alloyed Stainless Steels in a Chloride Solution
  15. Unfall durch Drahtseilriss in einer Tunnelbaustelle
  16. Synthesis of Nanocrystalline B2 Structured (Ru, Ir) Al in the Ternary Ru–Al–Ir System by Mechanical Alloying and its Thermal Stability
  17. Preparation of Ca-α-sialon Ceramics with Compositions along the Si3N4-1/2 Ca3N2:3AIN Line
  18. SiC–Si3N4 Nanocomposite Prepared by the Addition of SiO2 + C
  19. Ceramics in the Si3N4–ZrO2–CeO2 System: Phase Composition Changes and Properties
  20. The Al–Ca System, Part 1: Experimental Investigation of Phase Equilibria and Crystal Structures
  21. The Al–Ca System, Part 2: Calorimetrie Measurements and Thermodynamic Assessment
  22. Phase Relationships of the Gd-Zn System
  23. Ableitung des Kristallisationspfades in ternären Gusslegierungen
  24. Bildanalyse komplexer Werkstoffgefüge durch Texturanalyse und Korrelation mit den Eigenschaften durch neuronale Netze
  25. Grain Growth in the Nanocrystalline W–Cu and Cu–Pb Composite Powders Prepared by Mechanical Alloying
  26. Toughening and Strengthening Response in Ni3Al-Bonded Titanium Carbide Cermets
  27. Creep Behavior of γ-TiAl-Based Alloys with Fully Lamellar Microstore
  28. Elevated Temperature Deformation of P/M Dispersion - Strengthened Copper and Aluminium
  29. Evolution of the Microstructure during Hot Working of Gamma-Based TiAl Alloys
  30. Interface Motion of β-Silicon Nitride in a Liquid Phase
  31. Internal Friction and Creep of Titanium Aluminides with Different Microstructure
  32. Mitteilungen/Notifications
  33. Personen
  34. Conferences
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0179/html
Scroll to top button