Investigation into the kinetic behavior of molten aluminum pressureless infiltration into SiC preforms
-
Hassan Sharifi
Abstract
Infiltration of molten metal into ceramic performs without using external force is a new fabrication method for metal-matrix composites. In this research, the kinetics of pressureless infiltration in the processing of Al/SiC composites have been investigated. In order to improve the wettability and infiltration properties, Al-6Mg (wt.%) alloy was prepared. Also, the ceramic component was coated for 15 min using electroless copper plating at a temperature of 60 – 70 °C (pH = 12.5) and a rate of 17 – 20 μm s−1. Infiltration of molten aluminum into the coated ceramic perform was successfully carried out in the temperature range of 850 to 950 °C under nitrogen atmosphere. Microstructural investigations indicated a well-bonded metal–ceramic joint. Kinetic studies showed that the melt infiltration into the ceramic foam follows an S-shaped curve. The infiltration rate was specified with respect to variables such as the experiment temperature and the size of the pores of the ceramic component. The results revealed that by increasing the temperature and the size of pores, the infiltration rate increases. For infiltrating molten metal into the 10 and 30 ppi foams, activation energies of 5.902 kJ mol−1 and 7.232 kJ mol−1 are required, respectively.
References
[1] K.U.Kainer: Metal Matrix Composites, Custom-made materials for automotive and aerospace engineering, 1st Ed., Wiley-VCH, Weinheim, Germany (2003).Search in Google Scholar
[2] J.Eliasson, R.Sandström: Key Eng. Mater.104 (1995) 3. 10.4028/www.scientific.net/KEM.104-107.3Search in Google Scholar
[3] S.-R.Wang, H.-R.Gang, Y.-Z.Wang: J. Mater. Sci.41 (2006) 5751. 10.1007/s10853-006-0106-8Search in Google Scholar
[4] J.W.Kaczmar, K.Pietrzak, W.Wlosinski: J. Mater. Process. Technol.106 (2000) 58. 10.1016/S0924-0136(00)00639-7Search in Google Scholar
[5] S.Vaucher, J.Kuebler, O.Beffort, L.Biasetto, F.Zordan, P.Colombo: Compos. Sci. Technol.68 (2008) 3202. 10.1016/j.compscitech.2008.08.004Search in Google Scholar
[6] M.Mizumoto, T.Ohgai, A.Kagawa: J. Mater. Sci. Eng. A413 (2005) 521. 10.1016/j.msea.2005.07.065Search in Google Scholar
[7] E.Akbarzadeh, A.P.Josep, M.Picas, B.Teresa: Mater. Des.88 (2015) 683. 10.1016/j.matdes.2015.09.015Search in Google Scholar
[8] S.Ren, X.Qu, X.He, M.Qin, X.Shen: J. Alloys Compd.484 (2009) 256. 10.1016/j.jallcom.2009.04.074Search in Google Scholar
[9] J.Liu, Z.Zheng, J.Wang: J. Alloys Compd.465 (2007) 239. 10.1016/j.jallcom.2007.10.055Search in Google Scholar
[10] G.Kraub, J.Kübler, E.Trentini: J. Mater. Sci. Eng. A337 (2002) 315. 10.1016/S0921-5093(02)00044-8Search in Google Scholar
[11] S.N.Chou, J.L.Huang, D.F.Lii, H.H.Lu: J. Alloys Compd.419 (2006) 98–102. 10.1016/j.jallcom.2005.10.006Search in Google Scholar
[12] A.Demir, N.Altinkok: Compos. Sci. Technol.64 (2004) 2067. 10.1016/j.compscitech.2004.02.015Search in Google Scholar
[13] E.Carreno-Marelli, T.Cutard, R.Schaller, C.Bonjour: J. Mater. Sci. Eng. A251 (1998) 48. 10.1016/S0921-5093(98)00649-2Search in Google Scholar
[14] Y.Shahin, M.Acilar: Composites Part A34 (2003) 709. 10.1016/S1359-835X(03)00142-8Search in Google Scholar
[15] M.K.Aghajanian, N.H.Macmillan, C.R.Kennedy, S.J.Luszcz, R.Roy: J. Mater. Sci.24 (1989) 58. 10.1007/BF01107457Search in Google Scholar
[16] M.K.Aghajanian, M.A.Rocazella, J.T.Burke, S.D.Keck: J. Mater. Sci.26 (1991) 447. 10.1007/BF00576541Search in Google Scholar
[17] K.B.Lee, H.Kwon: Metall. Mater. Trans. A30 (1999) 2999. 10.1007/s11661-999-0137-2Search in Google Scholar
[18] A.M.Zahedi, H.R.Rezaie, J.Javadpour, M.Mazaheri, M.G.Haghighi: Ceram. Int.35 (2009) 1919. 10.1016/j.ceramint.2008.10.024Search in Google Scholar
[19] X.Shen, S.Ren, X.He, M.Qin, X.Qu: J. Alloys Compd.468 (2009) 158. 10.1016/j.jallcom.2008.01.022Search in Google Scholar
[20] J.A.Aguilar-Martinez, M.B.Hernandez, J.Castillo-Torres, M.I.Pech-Canul: Rev. Mex. Fis.53 (2007) 205.Search in Google Scholar
[21] A.Aguilar-Martinez, M.I.Pech-Canul, M.Rodriguez-Reyes, J.L.De la Pena: J. Mater. Sci.39 (2004) 1025. 10.1023/B:JMSC.0000012936.48243.3aSearch in Google Scholar
[22] K.B.Lee, J.P.Ahn, H.Kwon: Metall. Mater. Trans. A (2001) 1007. 10.1007/s11661-001-0358-5Search in Google Scholar
[23] K.B.Lee, H.Kwon: Metall. Mater. Trans. A33 (2002) 455. 10.1007/s11661-002-0106-5Search in Google Scholar
[24] V.Kevrkijan: Metall. Mater. Trans. A35 (2004) 707. 10.1007/s11661-004-0381-4Search in Google Scholar
[25] I.Kerti, F.Toptan: Mater. Lett.62 (2007) 1215. 10.1016/j.matlet.2007.08.015Search in Google Scholar
[26] V.K.Singh, S.Chauhan, P.C.Gope, A.K.Chaudhary: High Temp. Mater. Processes34 (2014) 163. 10.1515/htmp-2014-0043Search in Google Scholar
[27] J.Hashim, L.Looney, M.S.J.Hashmi: J. Mater. Process. Technol.119 (2001) 329. 10.1016/S0924-0136(01)00919-0Search in Google Scholar
[28] S.Y.Oh, J.A.Cornie, K.C.Russell: Metall. Trans. A20 (1989) 527. 10.1007/BF02653932Search in Google Scholar
[29] S.F.Corbin, X.Zhao-jie, H.Henein, P.S.Apte: Mater. Sci. Eng. A262 (1999) 192. 10.1016/S0921-5093(98)01019-3Search in Google Scholar
[30] H.Sharifi, M.Divandari, A.R.Khavandi, M.H.Idris: Acta Metall. Sinica23 (2010) 241. 10.11890/1006-7191-104-241Search in Google Scholar
[31] H.Sharifi, A.R.Khavandi, M.Divandari, M.I.Hasbullah: Int. J. Miner. Metall. Mater.19 (2012) 77. 10.1007/s12613-012-0518-1Search in Google Scholar
[32] D.Lee, S.W.Park, D.B.Lee: Met. Mater. Int.14 (2008) 419. 10.3365/met.mat.2008.08.419Search in Google Scholar
[33] S.R.Wang, Y.Z.Wang, Q.Chi: J. Mater. Sci.42 (2007) 7812. 10.1007/s10853-007-1591-0Search in Google Scholar
[34] C.A.Leon-Patino, A.L. RobinDrew: Curr. Opin. Solid State Mater. Sci.9 (2005) 211. 10.1016/j.cossms.2006.04.006Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- A metastable phase diagram for the dynamic transformation of austenite at temperatures above the Ae3
- Experimental investigation of phase equilibria in the Co–Ni–Zr ternary system
- Phase equilibria of the Ni–Sb–Zn system at 600 °C
- High frequency cycling behaviour of three AZ magnesium alloys – microstructural characterisation
- Influence of auxetic foam in quasi-static axial crushing
- Electrochemical behaviour of iron and AISI 304 stainless steel in simulated acid rain solution
- Mechanochemical synthesis of CaMoO4 nanoparticles: kinetics and characterization
- Synthesis and characterization of iron oxide nanoparticles prepared hydrothermally at different reaction temperatures and pH
- Influence of SPS parameters on the density and hardness of zinc selenide
- Investigation into the kinetic behavior of molten aluminum pressureless infiltration into SiC preforms
- Review
- Centrifugal casting technique baseline knowledge, applications, and processing parameters: overview
- People
- Prof. Dr.-Ing. Jürgen Hirsch on the occasion of his 65th birthday
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- A metastable phase diagram for the dynamic transformation of austenite at temperatures above the Ae3
- Experimental investigation of phase equilibria in the Co–Ni–Zr ternary system
- Phase equilibria of the Ni–Sb–Zn system at 600 °C
- High frequency cycling behaviour of three AZ magnesium alloys – microstructural characterisation
- Influence of auxetic foam in quasi-static axial crushing
- Electrochemical behaviour of iron and AISI 304 stainless steel in simulated acid rain solution
- Mechanochemical synthesis of CaMoO4 nanoparticles: kinetics and characterization
- Synthesis and characterization of iron oxide nanoparticles prepared hydrothermally at different reaction temperatures and pH
- Influence of SPS parameters on the density and hardness of zinc selenide
- Investigation into the kinetic behavior of molten aluminum pressureless infiltration into SiC preforms
- Review
- Centrifugal casting technique baseline knowledge, applications, and processing parameters: overview
- People
- Prof. Dr.-Ing. Jürgen Hirsch on the occasion of his 65th birthday
- DGM News
- DGM News