Startseite Influence of auxetic foam in quasi-static axial crushing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of auxetic foam in quasi-static axial crushing

  • Saeid Mohsenizadeh , Roozbeh Alipour , Zaini Ahmad und Amran Alias
Veröffentlicht/Copyright: 29. September 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper treats the influence of auxetic foam on the crush response and energy absorption response of square-section tubes when subjected to uniaxial quasi-static loading. The study aims at quantifying the energy absorption capability of auxetic foam-filled square tubes for variations in wall thickness, initial height, aspect ratio and slenderness ratio of the tube. The capability of simulating the crush response of auxetic foam-filled tubes using the validated numerical models is also presented. Based on the experimental results, the influence of the auxetic foam in the thin-walled square tubes was quantified in terms of energy absorption capacity, specific energy absorption and crush force efficiency. It is evident that a thicker tube filled with auxetic foam is preferable if the energy absorption level is the primary goal, yet this compromises the crush force efficiency. The outcome of this present study is the establishment of empirical models for estimating the quasi-static crushing response of auxetic foam-filled tubes with varying slenderness ratio and aspect ratio.


*Correspondence address, Dr. Roozbeh Alipour, Department of Mechanical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Imam-Khomeini Blvd., Daneshgah Street, Mahshahr, Khuzestan, 6351977439, Islamic Republic of Iran, Tel.: +986152318180, E-mail: , Web: http://mhriau.ac.ir/alipour

References

[1] F.Andrieux, D.-Z.Sun: Int. J. Mater. Res.101 (2010) 963971. 10.3139/146.110367Suche in Google Scholar

[2] Z.Ahmad, D.P.Thambiratnam: Mater. Des.30 (2009) 23932403. 10.1016/j.matdes.2008.10.017Suche in Google Scholar

[3] Z.Ahmad, D.P.Thambiratnam: Comput. Struct.87 (2009) 186197. 10.1016/j.compstruc.2008.10.003Suche in Google Scholar

[4] Z.Ahmad, D.P.Thambiratnam: Int. J. Crashworthiness14 (2009) 349363. 10.1080/13588260902775041Suche in Google Scholar

[5] Z.Ahmad, D.P.Thambiratnam, A.C.C.Tan: Int. J. Impact. Eng.37 (2010) 475488. 10.1016/j.ijimpeng.2009.11.010Suche in Google Scholar

[6] S.Mohsenizadeh, R.Alipour, M. ShokriRad, A. FarokhiNejad, Z.Ahmad: Mater. Des.88 (2015) 258268. 10.1016/j.matdes.2015.08.152Suche in Google Scholar

[7] F.Mat, K.A.Ismail, S.Yaacob, Z.Ahmad: Materialprüfung56 (2014) 10011008. 10.3139/120.110663Suche in Google Scholar

[8] S.R.Reid, T.Y.Reddy, M.D.Gray: Int. J. Mech. Sci.28 (1986) 295322. 10.1016/0020-7403(86)90043-3Suche in Google Scholar

[9] A.G.Hanssen, M.Langseth, O.S.Hopperstad: Int. J. Impact. Eng.24 (2000) 475507. 10.1016/S0734-743X(99)00170-0Suche in Google Scholar

[10] A.G.Hanssen, M.Langseth, O.S.Hopperstad: Int. J. Impact. Eng.24 (2000) 347383. 10.1016/S0734-743X(99)00169-4Suche in Google Scholar

[11] S.R.Reid, T.Y.Reddy: Int. J. Mech. Sci.28 (1986) 643656. 10.1016/0020-7403(86)90010-XSuche in Google Scholar

[12] G.Sun, G.Li, S.Hou, S.Zhou, W.Li, Q.Li: Mater. Sci. Eng.A527 (2010) 19111919. 10.1016/j.matdes.2012.01.028Suche in Google Scholar

[13] I.Shufrin, E.Pasternak, A.V.Dyskin: Int. J. Solids Struct.54 (2015) 192214. 10.1016/j.ijsolstr.2014.10.014Suche in Google Scholar

[14] Y.Prawoto: Comput. Mater. Sci.58 (2012) 140153. 10.1016/j.commatsci.2012.02.012Suche in Google Scholar

[15] G.N.Greaves, A.Greer, R.Lakes, T.Rouxel: Nat. Mater.10 (2011) 823837. 10.1038/nmat3134Suche in Google Scholar

[16] R.Lakes: Science235 (1987) 10381040. 10.1126/science.235.4792.1038Suche in Google Scholar

[17] N.Chan, K.E.Evans: J. Mater. Sci.32 (1997) 59455953. 10.1023/A:1018606926094Suche in Google Scholar

[18] B.Xu, F.Arias, S.T.Brittain, X.-M.Zhao, B.Grzybowski, S.Torquato, G.M.Whitesides: Adv. Mater.11 (1999) 1186. 10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-KSuche in Google Scholar

[19] F.Scarpa, J.Yates, L.Ciffo, S.Patsias: Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.216 (2002) 11531156. 10.1243/095440602321029382Suche in Google Scholar

[20] F.Scarpa, F.Smith: J. Intell. Mater. Syst. Struct.15 (2004) 973979. 10.1177/1045389X04046610Suche in Google Scholar

[21] B.Henderson, J.Whitty, P.Myler, C.Chirwa: Int. J. Crashworthiness12 (2007) 689698. 10.1080/13588260701789425Suche in Google Scholar

[22] Y.M.Xie, X.Yang, J.Shen, X.Yan, A.Ghaedizadeh, J.Rong, X.Huang, S.Zhou: Int. J. Solids Struct.51 (2014) 40384051. 10.1016/j.ijsolstr.2014.07.024Suche in Google Scholar

[23] S.Hou, T.Liu, Z.Zhang, X.Han, Q.Li: Mater. Des.82 (2015) 247259. 10.1016/j.matdes.2015.05.050Suche in Google Scholar

[24] Hibbitt, Karlsson, Sorensen: ABAQUS, Theory Manual (1997).Suche in Google Scholar

[25] R.Alipour, M.Bahari: IREMOS3 (2010) 689693.Suche in Google Scholar

[26] R.Alipour, A. FrokhiNejad, S.Izman, M.Tamin: Appl. Mech. Mater.735 (2015) 5056. 10.4028/www.scientific.net/AMM.735.50Suche in Google Scholar

[27] R.Alipour, F.Najarian: Int. Rev. Mech. Eng.4.6 (2010): 780784.Suche in Google Scholar

[28] M.Bahari, R.Alipour: IJADT3 (2011) 3541.Suche in Google Scholar

[29] L.Mirfendereski, M.Salimi, S.Ziaei-Rad: Int. J. Mech. Sci.50 (2008) 10421057. 10.1016/j.ijmecsci.2008.02.007Suche in Google Scholar

[30] Standard test methods for tension testing of metallic materials, ASTM International, West Conshohocken, PA, USA (2001). 10.1520/E0008_E0008M-15ASuche in Google Scholar

[31] I.Faridmehr, M.H.Osman, A.B.Adnan, A.F.Nejad, R.Hodjati, M.Azimi: Amer. J. Civil. Eng. Archit.2 (2014) 5359. 10.12691/ajcea-2-1-6Suche in Google Scholar

[32] ASTM D3574-95. 10.1520/D3574-11Suche in Google Scholar

[33] W.Tanwongwan, J.Carmai: Proceedings of the World Congress on Engineering (2011).Suche in Google Scholar

[34] G.da Costa Machado, M.K.Alves, H.A.Al-Qureshi, R.Rossi: In: M.Alves, H.S.da Costa Mattos (Eds.) Solid Mechanics in Brazil2007 (2007) 161.Suche in Google Scholar

[35] L.L.Wang, D.S.Li, X.Q.Li, L.Wang, W.J.Yang: Appl. Mech. Mater.26 (2010) 320325. 10.4028/www.scientific.net/AMM.26-28.320Suche in Google Scholar

[36] Z.Trojanová, T.Podrábský, P.Lukáč, R.W.Armstrong, J.Pešička, M.Forejt: Int. J. Mater. Res.104 (2013) 762768. 10.3139/146.110922Suche in Google Scholar

[37] F.Xu, G.Sun, G.Li, Q.Li: Thin Wall Struct.74 (2014) 1227. 10.1016/j.tws.2013.08.021Suche in Google Scholar

[38] S.Mohsenizadeh, R.Alipour, A.F.Nejad, M.S.Rad, Z.Ahmad: Procedia Manuf.2 (2015) 331336. 10.1016/j.promfg.2015.07.058Suche in Google Scholar

[39] B.W.Williams, D.A.Oliveira, C.H.M.Simha, M.J.Worswick, R.Mayer: Int. J. Impact Eng.34 (2007) 14511464. 10.1016/j.ijimpeng.2006.08.001Suche in Google Scholar

Received: 2016-04-15
Accepted: 2016-06-20
Published Online: 2016-09-29
Published in Print: 2016-10-14

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111418/html
Button zum nach oben scrollen