Startseite Synthesis and characterization of iron oxide nanoparticles prepared hydrothermally at different reaction temperatures and pH
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and characterization of iron oxide nanoparticles prepared hydrothermally at different reaction temperatures and pH

  • Palagiri Bhavani , Chintaparty Rajababu , Md. Arif , Immareddy Venkata Subba Reddy und Nagireddy Ramamanohar Reddy
Veröffentlicht/Copyright: 29. September 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Iron oxide nanoparticles were synthesized with Fe+2 and Fe+3 precursors in a 1 : 2 ratio by using the hydrothermal method under different reaction temperatures and alkaline conditions. The iron oxide nanoparticles were characterized for structure, morphology, optical and magnetic properties. X-ray diffraction analysis confirmed that the samples prepared at different hydrothermal temperatures exhibited a magnetite structure, the increased intensity of the peaks indicates a high degree of crystallinity. The transformation of goethite to Fe3O4 structure was observed with variation of the pH value. The morphological study revealed that some samples exhibited spherical particles and some others exhibited a mixed morphology of spheres and rods. The iron oxide synthesized at 190 °C exhibited better magnetic properties due to the uniform distribution of spheres with particles size in the range, 18 – 25 nm.


*Correspondence address, Nagireddy Ramamanohar Reddy, Department of Materials Science and Nanotechnology, Yogi Vemana University, Vemanapuram, Kadapa-516003, India, Tel.: +91-8562-225451, Fax: +91-8562-225419, E-mail:

References

[1] A.K.Nikumbh, R.A.Pawar, D.V.Nighot, G.S.Gugale, M.D.Sangale, M.B.Khanvilkar, A.V.Nagawade: J. Magn. Magn. Mater.355 (2014) 201209. 10.1016/j.jmmm.2013.11.052Suche in Google Scholar

[2] H.J.Song, X.H.Jia, X.Q.Zhang: J. Mater. Chem.22 (2012) 2269922705. 10.1039/C1JM13233DSuche in Google Scholar

[3] M.K.Sinha, S.K.Sahu, P.Meshrama, L.B.Prasad, B.D.Pandey: Powder Technol.276 (2015) 214221. 10.1016/j.powtec.2015.02.006Suche in Google Scholar

[4] W.Wu, C.Jiang, V.A.L.Roy: Nanoscale7 (2015) 3858. 10.1039/C4NR04244ASuche in Google Scholar

[5] W.Wu, Z.Wu, T.Yu, C.Jiang, W.S.Kim: Sci. Technol. Adv. Mater.16 (2015) 023501. 10.1088/1468-6996/16/2/023501Suche in Google Scholar PubMed PubMed Central

[6] H.Karami: J. Cluster Sci.21 (2010) 1120. 10.1007/s10876-009-0278-xSuche in Google Scholar

[7] P.L.Hariani, M.Faizal, Ridwan, Marsi, D.Setiabudidaya: Int. J. Environ. Sci. Dev.4 (2013) 336340. 10.7763/IJESD.2013.V4.366Suche in Google Scholar

[8] E.H.Kim, H.S.Lee, B.K.Kwak, B.K.Kim: J. Mag. Magn. Mater.289 (2005) 328330. 10.1016/j.jmmm.2004.11.093Suche in Google Scholar

[9] D.S.Mathew, R.S.Juang: Chem. Eng. J.129 (2007) 5165. 10.1016/j.cej.2006.11.001Suche in Google Scholar

[10] Y.C.Han, H.G.Cha, C.W.Kim, Y.H.Kim, Y.S.Kang: J. Phys. Chem. C111 (2007) 62756280. 10.1021/jp067558zSuche in Google Scholar

[11] S.Ahmadi, C.H.Chia, S.Zakaria, K.Saeedfar, N.Asim: J. Mag. Magn. Mater.324/2012) 41474150. 10.1016/j.jmmm.2012.07.023Suche in Google Scholar

[12] M.Hojamberdiev, G.Zhu, A.Eminov, K.Okada: J. Cluster Sci.24 (2013) 97106. 10.1007/s10876-012-0522-7Suche in Google Scholar

[13] D.Li, W.Y.Teoh, C.Selomulya, R.C.Woodward, P.Munroe, R.Amal: J. Mater. Chem.17 (2007) 48764884. 10.1039/B617280FSuche in Google Scholar

[14] H.Iida, K.Takayanagi, T.Nakanishi, T.Osaka: J. Colloid Interface Sci.314 (2007) 274280. 10.1016/j.jcis.2007.05.047Suche in Google Scholar PubMed

[15] MD.SharifulIslam, Y.Kusumoto, J.Kurawaki, MD.Abdulla-Al-Mamun, H.Manaka: Bull. Mater. Sci.35 (2012) 10471053. 10.1007/s12034-012-0414-3Suche in Google Scholar

[16] Z.Wu, S.Yang, W.Wu: Nanoscale8 (2016) 12371259. 10.1039/C5NR07681ASuche in Google Scholar PubMed

[17] S.A.Kulkarni, P.S.Sawadh, P.K.Palei: J. Korean Chem. Soc.58 (2014) 100104. 10.5012/jkcs.2014.58.1.100Suche in Google Scholar

[18] F.N.Sayed, V.Polshettiwar: Sci. Rep.5 (2015) 09733. 10.1038/srep09733Suche in Google Scholar PubMed PubMed Central

[19] X.Cui, T.Liu, Z.Zhang, L.Wang, S.Zuo, W.Zhu: Powder Technol.266 (2014) 113119. 10.1016/j.powtec.2014.06.028.10.1016/j.powtec.2014.06.028Suche in Google Scholar

[20] G.Rana, U.C.Johri: Adv. Mater. Lett.5 (2014) 280286. 10.5185/amlett.2014.10563Suche in Google Scholar

[21] B.K.Pandey, A.K.Shahi, JyotiShah, R.K.Kotnala, R.Gopal: Appl. Surf. Sci.289 (2014) 462471. 10.1016/j.apsusc.2013.11.009Suche in Google Scholar

[22] S.Ahmadi, C.H.Chia, S.Zakaria, K.Saeedfar, N.Asim: J. Magn. Magn. Mater.324 (2012) 41474150. 10.1016/j.jmmm.2012.07.023Suche in Google Scholar

[23] X.N.Xua, Y.Wolfus, A.Shaulov, Y.Yeshurun, I.Felner, I.Nowik, Yu.Koltypin, A.Gedanken: J. Appl. Phys.91 (2002) 46114616. 10.1063/1.1457544Suche in Google Scholar

Received: 2016-03-02
Accepted: 2016-05-11
Published Online: 2016-09-29
Published in Print: 2016-10-14

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111417/html
Button zum nach oben scrollen