Startseite High frequency cycling behaviour of three AZ magnesium alloys – microstructural characterisation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High frequency cycling behaviour of three AZ magnesium alloys – microstructural characterisation

  • Zuzanka Trojanová , Peter Palček , Mária Chalupová , Pavel Lukáč und Ivana Hlaváčová
Veröffentlicht/Copyright: 29. September 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Three Mg–Al–Zn alloys, namely AZ31, AZ63 and AZ91, were subjected to high frequency cyclic loading with the aim of revealing their fatigue behaviour. AZ63 and AZ91 alloys contained discontinuous and continuous precipitates and also the intermetallic compound Mg17Al12. Samples were loaded step by step at increasing stress amplitudes at room temperature. Three characteristics of the cycled samples were investigated: the sample surface, the fatigue fracture surface and the fracture surface after the static fracture of samples. Details of the fatigue and fracture behaviour were examined using scanning electron microscopy. The significant roles of twinning and dislocation movement during the high frequency cycling are discussed. The limited plasticity of alloys estimated during the high frequency cycling is due to a decrease in the moving dislocation density entering into the thermally activated process.


*Correspondence address, Prof. RNDr. Zuzanka Trojanová, DrSc., Department of Physics of Materials Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic, Tel.: +420951551658, Fax: +420951551490, E-mail:

References

[1] I.J.Polmear: Mater. Sci. Technol.10 (1994) 1. 10.1179/mst.1994.10.1.1Suche in Google Scholar

[2] G.Murugan, K.Raghukandan, U.T.S.Pillai, B.C.Pai, K.Mahadevan: Mater. Des.30 (2009) 2636. 10.1016/j.matdes.2008.10.032Suche in Google Scholar

[3] G.Eisenmeier, B.Holzwarth, H.W.Höppel, H.Mughrabi: Mater. Sci. Eng. A319 (2001) 578. 10.1016/S0921-5093(01)01105-4Suche in Google Scholar

[4] T.S.Shih, W.S.Liu, Y.J.Chen: Mater. Sci. Eng. A325 (2002) 152. 10.1016/S0921-5093(01)01411-3Suche in Google Scholar

[5] M.Matsuzuki, S.Horibe: Mater. Sci. Eng. A504 (2009)169. 10.1016/j.msea.2008.10.034Suche in Google Scholar

[6] S.Ishihara, Z.Nan, T.Goshima: Mater. Sci. Eng. A468–470 (2007) 214. 10.1016/j.msea.2006.09.124Suche in Google Scholar

[7] M.F.Horstemeyer, N.Yang, K.Gall, D.L.McDowell, J.Fan, P.M.Gullett: Acta Mater.52 (2004) 1327. 10.1016/j.actamat.2003.11.018Suche in Google Scholar

[8] S.Fintová, L.Kunz: J. Mech. Behav. Biomed.42 (2015) 219. 10.1016/j.jmbbm.2014.11.019Suche in Google Scholar PubMed

[9] M.Horynová, J.Zapletal, P.Doležal, P.Gejdoš: Mater. Des.45 (2013) 253. 10.1016/j.matdes.2012.08.079Suche in Google Scholar

[10] Z.M.Li, Q.G.Wang, A.A.Luo, L.M.Peng, P.H.Fu, Y.X.Wang: Mater. Sci. Eng. A582 (2013) 170. 10.1016/j.msea.2013.06.001Suche in Google Scholar

[11] Z.Trojanová, T.Podrábský, P.Lukáč, R.W.Armstrong, J.Pešička, M.Forejt: Int. J. Mater. Res.104 (2013) 762. 10.3139/146.110922Suche in Google Scholar

[12] R.W.Armstrong, S.M.Walley: Int. Mater. Rev.53 (2008) 105. 10.1179/174328008X277795Suche in Google Scholar

[13] J.Porubčan, P.Palček, D.Blažek, Z.Trojanová: Solid State Phenomena184 (2012) 197. 10.4028/www.scientific.net/SSP.184.197Suche in Google Scholar

[14] F.Nový, M.Janeček, V.Škorík, J.Müller, L.Wagner: Int. J. Mater. Res.100 (2009) 288. 10.3139/146.110043Suche in Google Scholar

[15] Z.Trojanová, P.Palček, M.Chalupová, I.Hlaváčová, P.Lukáč: Arch. Mater. Sci. Eng.71 (2015) 27.Suche in Google Scholar

[16] A.Mielczarek, W.Riehemann, Z.Trojanová, P.Lukáč: Mater. Sci. Eng. A462 (2007) 230. 10.1016/j.msea.2005.11.087Suche in Google Scholar

[17] M.Kufová, O.Bokůvka, F.Nový, M.Chalupová: Proc. 20th Danubia – Adria Symposium on Experimental Metods in Solid Mechanics, Györ, Hungary (2003)140.Suche in Google Scholar

[18] R.Armstrong, I.Codd, R.M.Douthwaite, N.J.Petch: Philos. Mag.7 (1962) 45. 10.1080/14786436208201857Suche in Google Scholar

[19] C.H.Cáceres, G.E.Mann, J.R.Griffiths: Metal. Mater. Trans.42A (2011) 1950. 10.1007/s11661-010-0599-2Suche in Google Scholar

[20] R.B.Figueiredo, Z.Száraz, Z.Trojanová, P.Lukáč, T.G.Langdon: Scr. Mater.63 (2010) 504. 10.1016/j.scriptamat.2010.05.016Suche in Google Scholar

[21] P.Klimanek, A.Pötzsch: Mater. Sci. Eng. A324 (2002) 145. 10.1016/S0921-5093(01)01297-7Suche in Google Scholar

[22] U.F.Kocks, A.S.Argon, M.F.Ashby, in: B.Chalmers, J.W.Chistian, T.B.Massalski (Eds.), Prog. Mater. Sci.19, Pergamon, Oxford (1975) 1077.Suche in Google Scholar

[23] K.Ono: J. Appl. Phys.39 (1968) 1803. 10.1063/1.1656434Suche in Google Scholar

[24] Z.Trojanová, P.Lukáč, K.U.Kainer: Adv. Eng. Mater.9 (2007) 370. 10.1002/adem.200700018Suche in Google Scholar

[25] Z.Trojanová, P.Lukáč: Int. J. Mater. Res.100 (2009) 270. 10.3139/146.110048Suche in Google Scholar

[26] Z.Trojanová, K.Máthis, P.Lukáč, G.Németh, F.Chmelík: Mater. Chem. Phys.130 (2011) 1146. 10.1016/j.matchemphys.2011.08.045Suche in Google Scholar

[27] V.I.Startsev, in: F.R.N.Nabarro (Ed.), Dislocations in Solids, Vol. 6, North Holland Publishing Company, Amsterdam (1983) 145. ISBN: 978-0-444-53443-9.Suche in Google Scholar

[28] G.Regazzoni, U.F.Kocks, P.S.Follansbee: Acta Metall.35 (1987) 2865. 10.1016/0001-6160(87)90285-9Suche in Google Scholar

[29] R.Labusch: Acta Metall.20 (1972) 917. 10.1016/0001-6160(72)90085-5Suche in Google Scholar

Received: 2016-03-23
Accepted: 2016-06-17
Published Online: 2016-09-29
Published in Print: 2016-10-14

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111414/html
Button zum nach oben scrollen