Home High frequency cycling behaviour of three AZ magnesium alloys – microstructural characterisation
Article
Licensed
Unlicensed Requires Authentication

High frequency cycling behaviour of three AZ magnesium alloys – microstructural characterisation

  • Zuzanka Trojanová , Peter Palček , Mária Chalupová , Pavel Lukáč and Ivana Hlaváčová
Published/Copyright: September 29, 2016
Become an author with De Gruyter Brill

Abstract

Three Mg–Al–Zn alloys, namely AZ31, AZ63 and AZ91, were subjected to high frequency cyclic loading with the aim of revealing their fatigue behaviour. AZ63 and AZ91 alloys contained discontinuous and continuous precipitates and also the intermetallic compound Mg17Al12. Samples were loaded step by step at increasing stress amplitudes at room temperature. Three characteristics of the cycled samples were investigated: the sample surface, the fatigue fracture surface and the fracture surface after the static fracture of samples. Details of the fatigue and fracture behaviour were examined using scanning electron microscopy. The significant roles of twinning and dislocation movement during the high frequency cycling are discussed. The limited plasticity of alloys estimated during the high frequency cycling is due to a decrease in the moving dislocation density entering into the thermally activated process.


*Correspondence address, Prof. RNDr. Zuzanka Trojanová, DrSc., Department of Physics of Materials Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic, Tel.: +420951551658, Fax: +420951551490, E-mail:

References

[1] I.J.Polmear: Mater. Sci. Technol.10 (1994) 1. 10.1179/mst.1994.10.1.1Search in Google Scholar

[2] G.Murugan, K.Raghukandan, U.T.S.Pillai, B.C.Pai, K.Mahadevan: Mater. Des.30 (2009) 2636. 10.1016/j.matdes.2008.10.032Search in Google Scholar

[3] G.Eisenmeier, B.Holzwarth, H.W.Höppel, H.Mughrabi: Mater. Sci. Eng. A319 (2001) 578. 10.1016/S0921-5093(01)01105-4Search in Google Scholar

[4] T.S.Shih, W.S.Liu, Y.J.Chen: Mater. Sci. Eng. A325 (2002) 152. 10.1016/S0921-5093(01)01411-3Search in Google Scholar

[5] M.Matsuzuki, S.Horibe: Mater. Sci. Eng. A504 (2009)169. 10.1016/j.msea.2008.10.034Search in Google Scholar

[6] S.Ishihara, Z.Nan, T.Goshima: Mater. Sci. Eng. A468–470 (2007) 214. 10.1016/j.msea.2006.09.124Search in Google Scholar

[7] M.F.Horstemeyer, N.Yang, K.Gall, D.L.McDowell, J.Fan, P.M.Gullett: Acta Mater.52 (2004) 1327. 10.1016/j.actamat.2003.11.018Search in Google Scholar

[8] S.Fintová, L.Kunz: J. Mech. Behav. Biomed.42 (2015) 219. 10.1016/j.jmbbm.2014.11.019Search in Google Scholar PubMed

[9] M.Horynová, J.Zapletal, P.Doležal, P.Gejdoš: Mater. Des.45 (2013) 253. 10.1016/j.matdes.2012.08.079Search in Google Scholar

[10] Z.M.Li, Q.G.Wang, A.A.Luo, L.M.Peng, P.H.Fu, Y.X.Wang: Mater. Sci. Eng. A582 (2013) 170. 10.1016/j.msea.2013.06.001Search in Google Scholar

[11] Z.Trojanová, T.Podrábský, P.Lukáč, R.W.Armstrong, J.Pešička, M.Forejt: Int. J. Mater. Res.104 (2013) 762. 10.3139/146.110922Search in Google Scholar

[12] R.W.Armstrong, S.M.Walley: Int. Mater. Rev.53 (2008) 105. 10.1179/174328008X277795Search in Google Scholar

[13] J.Porubčan, P.Palček, D.Blažek, Z.Trojanová: Solid State Phenomena184 (2012) 197. 10.4028/www.scientific.net/SSP.184.197Search in Google Scholar

[14] F.Nový, M.Janeček, V.Škorík, J.Müller, L.Wagner: Int. J. Mater. Res.100 (2009) 288. 10.3139/146.110043Search in Google Scholar

[15] Z.Trojanová, P.Palček, M.Chalupová, I.Hlaváčová, P.Lukáč: Arch. Mater. Sci. Eng.71 (2015) 27.Search in Google Scholar

[16] A.Mielczarek, W.Riehemann, Z.Trojanová, P.Lukáč: Mater. Sci. Eng. A462 (2007) 230. 10.1016/j.msea.2005.11.087Search in Google Scholar

[17] M.Kufová, O.Bokůvka, F.Nový, M.Chalupová: Proc. 20th Danubia – Adria Symposium on Experimental Metods in Solid Mechanics, Györ, Hungary (2003)140.Search in Google Scholar

[18] R.Armstrong, I.Codd, R.M.Douthwaite, N.J.Petch: Philos. Mag.7 (1962) 45. 10.1080/14786436208201857Search in Google Scholar

[19] C.H.Cáceres, G.E.Mann, J.R.Griffiths: Metal. Mater. Trans.42A (2011) 1950. 10.1007/s11661-010-0599-2Search in Google Scholar

[20] R.B.Figueiredo, Z.Száraz, Z.Trojanová, P.Lukáč, T.G.Langdon: Scr. Mater.63 (2010) 504. 10.1016/j.scriptamat.2010.05.016Search in Google Scholar

[21] P.Klimanek, A.Pötzsch: Mater. Sci. Eng. A324 (2002) 145. 10.1016/S0921-5093(01)01297-7Search in Google Scholar

[22] U.F.Kocks, A.S.Argon, M.F.Ashby, in: B.Chalmers, J.W.Chistian, T.B.Massalski (Eds.), Prog. Mater. Sci.19, Pergamon, Oxford (1975) 1077.Search in Google Scholar

[23] K.Ono: J. Appl. Phys.39 (1968) 1803. 10.1063/1.1656434Search in Google Scholar

[24] Z.Trojanová, P.Lukáč, K.U.Kainer: Adv. Eng. Mater.9 (2007) 370. 10.1002/adem.200700018Search in Google Scholar

[25] Z.Trojanová, P.Lukáč: Int. J. Mater. Res.100 (2009) 270. 10.3139/146.110048Search in Google Scholar

[26] Z.Trojanová, K.Máthis, P.Lukáč, G.Németh, F.Chmelík: Mater. Chem. Phys.130 (2011) 1146. 10.1016/j.matchemphys.2011.08.045Search in Google Scholar

[27] V.I.Startsev, in: F.R.N.Nabarro (Ed.), Dislocations in Solids, Vol. 6, North Holland Publishing Company, Amsterdam (1983) 145. ISBN: 978-0-444-53443-9.Search in Google Scholar

[28] G.Regazzoni, U.F.Kocks, P.S.Follansbee: Acta Metall.35 (1987) 2865. 10.1016/0001-6160(87)90285-9Search in Google Scholar

[29] R.Labusch: Acta Metall.20 (1972) 917. 10.1016/0001-6160(72)90085-5Search in Google Scholar

Received: 2016-03-23
Accepted: 2016-06-17
Published Online: 2016-09-29
Published in Print: 2016-10-14

© 2016, Carl Hanser Verlag, München

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111414/html
Scroll to top button