Mechanochemical synthesis of CaMoO4 nanoparticles: kinetics and characterization
-
Arman Hoseinpur
, Malihe Mohammadi Bezanaj und Jalil Vahdati Khaki
Abstract
This research introduces the mechanosynthesis process for CaMoO4 nanoparticles by using MoO3 and CaO as initial reactants. An empirical model was developed to describe the kinetics of the reaction. X-ray diffraction was used at each step of the milling to evaluate the developed model. The experimental data and the results from the model are in good agreement. The synthesized powders in this research were characterized using X-ray diffraction, electron microscopy, dynamic laser scattering, and photoluminescence spectroscopy techniques. Photoluminescence characterizations revealed that the synthesized CaMoO4 generated two photoluminescence emissions, at 377 nm (violet) and 515 nm (green). It was also observed that further milling of the synthesized powders changed the photoluminescence properties of the product. After 12 h of milling, the synthesized CaMoO4 generated a novel photoluminescence emission at 564 nm. The results of this research indicate that mechanical milling can be employed to control the photoluminescent properties of CaMoO4.
References
[1] C.Koepke, A.Lempicki: J. Lumin.47 (1990) 189. 10.1016/0022-2313(90)90031-6Suche in Google Scholar
[2] Y.Zhang, N.A.W.Holzwarth, R.T.Williams: Phys. Rev. B57 (1998) 12738. 10.1103/PhysRevB.57.12738Suche in Google Scholar
[3] C.S.Lim: Mater. Res. Bull.47 (2012) 4220. 10.1016/j.materresbull.2012.09.029Suche in Google Scholar
[4] R.Grasser, E.Pitt, A.Scharmann, G.Zimmerer: Phys. Status Solidi B359 (1975) 359. 10.1002/pssb.2220690206Suche in Google Scholar
[5] B.Chandrasekhar, W.White: Mat. Res. Bull.25 (1990) 1513. 10.1016/0025-5408(90)90128-OSuche in Google Scholar
[6] C.Pu, T.Liu, Q.Zhang: Phys. Status Solidi B245 (2008) 1586. 10.1002/pssb.200743263Suche in Google Scholar
[7] T.Thongtem, S.Kungwankunakorn, B.Kuntalue, A.Phuruangrat, S.Thongtem: J. Alloys Compd.506 (2010) 475. 10.1016/j.jallcom.2010.07.033Suche in Google Scholar
[8] V.Thangadurai, C.Knittlmayer, W.Weppner: Mater. Sci. Eng. B106 (2004) 228–233. 10.1016/j.mseb.2003.09.025Suche in Google Scholar
[9] G.Fan, Z.Huang, T.Wang: Solid State Sci.16 (2013) 121–124. 10.1016/j.solidstatesciences.2012.11.006Suche in Google Scholar
[10] B.P.Singh, A.K.Parchur, R.S.Ningthoujam, A.A.Ansari, P.Singh, S.B.Rai: Dalton Trans.43 (2014) 47770. 10.1039/c3dt52786gSuche in Google Scholar PubMed
[11] Z.-J.Zhang, H.-H.Chen, X.-X.Yang, J.-T.Zhao: Mater. Sci. Eng. B145 (2007) 34. 10.1016/j.mseb.2007.09.091Suche in Google Scholar
[12] X.Li, Z.Yang, L.Guan, J.Guo, Y.Wang, Q.Guo: J. Alloys Compd.478 (2009) 684. 10.1016/j.jallcom.2008.11.109Suche in Google Scholar
[13] S.Mahlik, M.Grinberg, E.Cavalli, M.Bettinelli: J. Phys.: Condens. Matter.24 (2012) 215402. 10.1088/0953-8984/24/21/215402Suche in Google Scholar PubMed
[14] Y.Sun, J.Ma, X.Jiang, J.Fang, Z.Song, C.Gao, Z.Liu: Solid State Sci.12 (2010) 1283. 10.1016/j.solidstatesciences.2010.04.017Suche in Google Scholar
[15] Y.-S.Luo, X.-J.Dai, W.-D.Zhang, Y.Yang, C.Q.Sun, S.-Y.Fu: Dalton Trans.39 (2010) 2226. 10.1039/b915099dSuche in Google Scholar PubMed
[16] Y.Zakharko, A.Luchechko, I.Syvorotka, G.Stryganyuk, I.Solskii: Radiat. Meas.45 (2010) 429–431. 10.1016/j.radmeas.2009.11.001Suche in Google Scholar
[17] G. Seeta RamaRaju, E.Pavitra, Y.H.Ko, J.S.Yu: J. Mater. Chem.22 (2012) 15562. 10.1039/c2jm32049eSuche in Google Scholar
[18] Y.Sun, C.Li, Z.Zhang, X.Ma, L.Wang, Y.Wang: Solid State Sci.14 (2012) 219. 10.1016/j.solidstatesciences.2011.11.015Suche in Google Scholar
[19] S.Shi, Y.Zhang, Q.Liu, J.Zhou: Mater. Res. Bull.48 (2013), 3943. 10.1016/j.materresbull.2013.06.006Suche in Google Scholar
[20] C.Xu, D.Zou, H.Guo, F.Jie, T.Ying: J. Lumin.129 (2009) 474. 10.1016/j.jlumin.2008.11.017Suche in Google Scholar
[21] C.S.Pathak, D.D.Mishra, V.Agarwala, M.K.Mandal: Ceram. Int.38 (2012) 6191. 10.1016/ceramint.2012.04.070Suche in Google Scholar
[22] J.Li, M.Wang, X.Huo, X.Yao: Ceram. Int.34 (2008) 1077. 10.1016/j.ceramint.2007.09.042Suche in Google Scholar
[23] P.K.Giri, S.Bhattacharyya, D.K.Singh, R.Kesavamoorthy, B.K.Panigrahi, K.G.M.Nair: J. Appl. Phys.102 (2007) 093515. 10.1063/1.2804012Suche in Google Scholar
[24] C.Suryanarayana: Mechanical alloying and milling, Marcel Dekker, New York (2004). 10.1201/9780203020647Suche in Google Scholar
[25] A.P.A.Marques, F.C.Picon, D.M.A.Melo, P.S.Pizani, E.R.Leite, J.A.Varela, E.Longo: J. Fluoresc.18 (2008) 51. 10.1007/s10895-007-0237-6Suche in Google Scholar
[26] J.S.Forrester, G.B.Schaffer: Metall. Mater. Trans. A26 (1995) 725. 10.1007/BF02663921Suche in Google Scholar
[27] F.Urakaev, V.Boldyrev: Powder Technol.93 (2000) 93–107. 10.1016/S0032-5910(99)00175-8Suche in Google Scholar
[28] P.Baláž, E.Dutková, I.Škorvánek, E.Gock, J.Kovac, A.Satka: J. Alloys Compd.483 (2009) 484–487. 10.1016/j.jallcom.2008.07.151Suche in Google Scholar
[29] N.J.Calos, J.S.Forrester, G.B.Schaffer: J. Solid State Chem.158 (2001) 268–278. 10.1006/jssc.2001.9107Suche in Google Scholar
[30] M.P.Dallimore, P.G.McCormick: Mater. Trans.37 (1996) 1091–1098. 10.2320/matertrans1989.37.1091Suche in Google Scholar
[31] G.B.Schaffer, P.G.Mccormick: Metall. Mater. Trans. A23 (1992) 1992. 10.1007/BF02665060Suche in Google Scholar
[32] V.Rusanov: J. Solid State Chem.79 (1989) 181. 10.1016/0022-4596(89)90264-8Suche in Google Scholar
[33] D.R.Gaskell: Introduction to the Thermodynamics of Materials Science, 4th Ed., Taylor & Francis, London (2003).Suche in Google Scholar
[34] R.Dehoff: Thermodynamics in Material Science, 2nd Ed., Taylor & Francis, New York (2006).10.1201/9781420005851Suche in Google Scholar
[35] S.H.R. FatemiNayeri, J. VahdatiKhaki, M.R.Aboutalebi: Iran. J. Mater. Sci. Eng.6 (2009) 4–14.Suche in Google Scholar
[36] M.S.Marashi, J.Vahdati, S.M.Zebarjad: Int. J. Refract. Met. Hard Mater.43 (2014) 13. 10.1016/j.ijrmhm.2013.10.021Suche in Google Scholar
[37] W.D.A.M.de Boer, D.Timmerman, K.Dohnalová, I.N.Yassievich, H.Zhang, W.J.Buma, T.Gregorkiewicz: Nat. Nanotechnol.5 (2010) 878. 10.1038/nnano.2010.236Suche in Google Scholar PubMed
[38] Y.Wang, J.Ma, J.Tao, X.Zhu, J.Zhou, Z.Zhao: Ceram. Int.33 (2007) 693. 10.1016/j.ceramint.2005.11.003Suche in Google Scholar
[39] A.Phuruangrat, T.Thongtem, S.Thongtem: J. Alloys Compd.481 (2009) 568. 10.1016/j.jallcom.2009.03.037Suche in Google Scholar
[40] J.H.Ryu, J.-W.Yoon, C.S.Lim, W.-C.Oh, K.B.Shim: J. Alloys Compd.390 (2005) 245. 10.1016/j.jallcom.2004.07.064Suche in Google Scholar
[41] A.P.de Azevedo Marques, V.M.Longo, D.M.A.de Melo, P.S.Pizani, E.R.Leite, J.A.Varela: J. Solid State Chem.181 (2008) 1249–1257. 10.1016/j.jssc.2008.01.051Suche in Google Scholar
© 2016, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- A metastable phase diagram for the dynamic transformation of austenite at temperatures above the Ae3
- Experimental investigation of phase equilibria in the Co–Ni–Zr ternary system
- Phase equilibria of the Ni–Sb–Zn system at 600 °C
- High frequency cycling behaviour of three AZ magnesium alloys – microstructural characterisation
- Influence of auxetic foam in quasi-static axial crushing
- Electrochemical behaviour of iron and AISI 304 stainless steel in simulated acid rain solution
- Mechanochemical synthesis of CaMoO4 nanoparticles: kinetics and characterization
- Synthesis and characterization of iron oxide nanoparticles prepared hydrothermally at different reaction temperatures and pH
- Influence of SPS parameters on the density and hardness of zinc selenide
- Investigation into the kinetic behavior of molten aluminum pressureless infiltration into SiC preforms
- Review
- Centrifugal casting technique baseline knowledge, applications, and processing parameters: overview
- People
- Prof. Dr.-Ing. Jürgen Hirsch on the occasion of his 65th birthday
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- A metastable phase diagram for the dynamic transformation of austenite at temperatures above the Ae3
- Experimental investigation of phase equilibria in the Co–Ni–Zr ternary system
- Phase equilibria of the Ni–Sb–Zn system at 600 °C
- High frequency cycling behaviour of three AZ magnesium alloys – microstructural characterisation
- Influence of auxetic foam in quasi-static axial crushing
- Electrochemical behaviour of iron and AISI 304 stainless steel in simulated acid rain solution
- Mechanochemical synthesis of CaMoO4 nanoparticles: kinetics and characterization
- Synthesis and characterization of iron oxide nanoparticles prepared hydrothermally at different reaction temperatures and pH
- Influence of SPS parameters on the density and hardness of zinc selenide
- Investigation into the kinetic behavior of molten aluminum pressureless infiltration into SiC preforms
- Review
- Centrifugal casting technique baseline knowledge, applications, and processing parameters: overview
- People
- Prof. Dr.-Ing. Jürgen Hirsch on the occasion of his 65th birthday
- DGM News
- DGM News