Home Mechanochemical synthesis of CaMoO4 nanoparticles: kinetics and characterization
Article
Licensed
Unlicensed Requires Authentication

Mechanochemical synthesis of CaMoO4 nanoparticles: kinetics and characterization

  • Arman Hoseinpur , Malihe Mohammadi Bezanaj and Jalil Vahdati Khaki
Published/Copyright: September 29, 2016
Become an author with De Gruyter Brill

Abstract

This research introduces the mechanosynthesis process for CaMoO4 nanoparticles by using MoO3 and CaO as initial reactants. An empirical model was developed to describe the kinetics of the reaction. X-ray diffraction was used at each step of the milling to evaluate the developed model. The experimental data and the results from the model are in good agreement. The synthesized powders in this research were characterized using X-ray diffraction, electron microscopy, dynamic laser scattering, and photoluminescence spectroscopy techniques. Photoluminescence characterizations revealed that the synthesized CaMoO4 generated two photoluminescence emissions, at 377 nm (violet) and 515 nm (green). It was also observed that further milling of the synthesized powders changed the photoluminescence properties of the product. After 12 h of milling, the synthesized CaMoO4 generated a novel photoluminescence emission at 564 nm. The results of this research indicate that mechanical milling can be employed to control the photoluminescent properties of CaMoO4.


*Correspondence address, Arman Hoseinpur, Energy Storage Department, Sun-Air Research Institute (SARI), Ferdowsi University of Mashhad, Azadi Square, Mashhad, P.O. Box 9177-948974, I.R. Iran, Tel.: +989158279093, Fax: +985118763305, E-mail:

References

[1] C.Koepke, A.Lempicki: J. Lumin.47 (1990) 189. 10.1016/0022-2313(90)90031-6Search in Google Scholar

[2] Y.Zhang, N.A.W.Holzwarth, R.T.Williams: Phys. Rev. B57 (1998) 12738. 10.1103/PhysRevB.57.12738Search in Google Scholar

[3] C.S.Lim: Mater. Res. Bull.47 (2012) 4220. 10.1016/j.materresbull.2012.09.029Search in Google Scholar

[4] R.Grasser, E.Pitt, A.Scharmann, G.Zimmerer: Phys. Status Solidi B359 (1975) 359. 10.1002/pssb.2220690206Search in Google Scholar

[5] B.Chandrasekhar, W.White: Mat. Res. Bull.25 (1990) 1513. 10.1016/0025-5408(90)90128-OSearch in Google Scholar

[6] C.Pu, T.Liu, Q.Zhang: Phys. Status Solidi B245 (2008) 1586. 10.1002/pssb.200743263Search in Google Scholar

[7] T.Thongtem, S.Kungwankunakorn, B.Kuntalue, A.Phuruangrat, S.Thongtem: J. Alloys Compd.506 (2010) 475. 10.1016/j.jallcom.2010.07.033Search in Google Scholar

[8] V.Thangadurai, C.Knittlmayer, W.Weppner: Mater. Sci. Eng. B106 (2004) 228233. 10.1016/j.mseb.2003.09.025Search in Google Scholar

[9] G.Fan, Z.Huang, T.Wang: Solid State Sci.16 (2013) 121124. 10.1016/j.solidstatesciences.2012.11.006Search in Google Scholar

[10] B.P.Singh, A.K.Parchur, R.S.Ningthoujam, A.A.Ansari, P.Singh, S.B.Rai: Dalton Trans.43 (2014) 47770. 10.1039/c3dt52786gSearch in Google Scholar PubMed

[11] Z.-J.Zhang, H.-H.Chen, X.-X.Yang, J.-T.Zhao: Mater. Sci. Eng. B145 (2007) 34. 10.1016/j.mseb.2007.09.091Search in Google Scholar

[12] X.Li, Z.Yang, L.Guan, J.Guo, Y.Wang, Q.Guo: J. Alloys Compd.478 (2009) 684. 10.1016/j.jallcom.2008.11.109Search in Google Scholar

[13] S.Mahlik, M.Grinberg, E.Cavalli, M.Bettinelli: J. Phys.: Condens. Matter.24 (2012) 215402. 10.1088/0953-8984/24/21/215402Search in Google Scholar PubMed

[14] Y.Sun, J.Ma, X.Jiang, J.Fang, Z.Song, C.Gao, Z.Liu: Solid State Sci.12 (2010) 1283. 10.1016/j.solidstatesciences.2010.04.017Search in Google Scholar

[15] Y.-S.Luo, X.-J.Dai, W.-D.Zhang, Y.Yang, C.Q.Sun, S.-Y.Fu: Dalton Trans.39 (2010) 2226. 10.1039/b915099dSearch in Google Scholar PubMed

[16] Y.Zakharko, A.Luchechko, I.Syvorotka, G.Stryganyuk, I.Solskii: Radiat. Meas.45 (2010) 429431. 10.1016/j.radmeas.2009.11.001Search in Google Scholar

[17] G. Seeta RamaRaju, E.Pavitra, Y.H.Ko, J.S.Yu: J. Mater. Chem.22 (2012) 15562. 10.1039/c2jm32049eSearch in Google Scholar

[18] Y.Sun, C.Li, Z.Zhang, X.Ma, L.Wang, Y.Wang: Solid State Sci.14 (2012) 219. 10.1016/j.solidstatesciences.2011.11.015Search in Google Scholar

[19] S.Shi, Y.Zhang, Q.Liu, J.Zhou: Mater. Res. Bull.48 (2013), 3943. 10.1016/j.materresbull.2013.06.006Search in Google Scholar

[20] C.Xu, D.Zou, H.Guo, F.Jie, T.Ying: J. Lumin.129 (2009) 474. 10.1016/j.jlumin.2008.11.017Search in Google Scholar

[21] C.S.Pathak, D.D.Mishra, V.Agarwala, M.K.Mandal: Ceram. Int.38 (2012) 6191. 10.1016/ceramint.2012.04.070Search in Google Scholar

[22] J.Li, M.Wang, X.Huo, X.Yao: Ceram. Int.34 (2008) 1077. 10.1016/j.ceramint.2007.09.042Search in Google Scholar

[23] P.K.Giri, S.Bhattacharyya, D.K.Singh, R.Kesavamoorthy, B.K.Panigrahi, K.G.M.Nair: J. Appl. Phys.102 (2007) 093515. 10.1063/1.2804012Search in Google Scholar

[24] C.Suryanarayana: Mechanical alloying and milling, Marcel Dekker, New York (2004). 10.1201/9780203020647Search in Google Scholar

[25] A.P.A.Marques, F.C.Picon, D.M.A.Melo, P.S.Pizani, E.R.Leite, J.A.Varela, E.Longo: J. Fluoresc.18 (2008) 51. 10.1007/s10895-007-0237-6Search in Google Scholar

[26] J.S.Forrester, G.B.Schaffer: Metall. Mater. Trans. A26 (1995) 725. 10.1007/BF02663921Search in Google Scholar

[27] F.Urakaev, V.Boldyrev: Powder Technol.93 (2000) 93107. 10.1016/S0032-5910(99)00175-8Search in Google Scholar

[28] P.Baláž, E.Dutková, I.Škorvánek, E.Gock, J.Kovac, A.Satka: J. Alloys Compd.483 (2009) 484487. 10.1016/j.jallcom.2008.07.151Search in Google Scholar

[29] N.J.Calos, J.S.Forrester, G.B.Schaffer: J. Solid State Chem.158 (2001) 268278. 10.1006/jssc.2001.9107Search in Google Scholar

[30] M.P.Dallimore, P.G.McCormick: Mater. Trans.37 (1996) 10911098. 10.2320/matertrans1989.37.1091Search in Google Scholar

[31] G.B.Schaffer, P.G.Mccormick: Metall. Mater. Trans. A23 (1992) 1992. 10.1007/BF02665060Search in Google Scholar

[32] V.Rusanov: J. Solid State Chem.79 (1989) 181. 10.1016/0022-4596(89)90264-8Search in Google Scholar

[33] D.R.Gaskell: Introduction to the Thermodynamics of Materials Science, 4th Ed., Taylor & Francis, London (2003).Search in Google Scholar

[34] R.Dehoff: Thermodynamics in Material Science, 2nd Ed., Taylor & Francis, New York (2006).10.1201/9781420005851Search in Google Scholar

[35] S.H.R. FatemiNayeri, J. VahdatiKhaki, M.R.Aboutalebi: Iran. J. Mater. Sci. Eng.6 (2009) 414.Search in Google Scholar

[36] M.S.Marashi, J.Vahdati, S.M.Zebarjad: Int. J. Refract. Met. Hard Mater.43 (2014) 13. 10.1016/j.ijrmhm.2013.10.021Search in Google Scholar

[37] W.D.A.M.de Boer, D.Timmerman, K.Dohnalová, I.N.Yassievich, H.Zhang, W.J.Buma, T.Gregorkiewicz: Nat. Nanotechnol.5 (2010) 878. 10.1038/nnano.2010.236Search in Google Scholar PubMed

[38] Y.Wang, J.Ma, J.Tao, X.Zhu, J.Zhou, Z.Zhao: Ceram. Int.33 (2007) 693. 10.1016/j.ceramint.2005.11.003Search in Google Scholar

[39] A.Phuruangrat, T.Thongtem, S.Thongtem: J. Alloys Compd.481 (2009) 568. 10.1016/j.jallcom.2009.03.037Search in Google Scholar

[40] J.H.Ryu, J.-W.Yoon, C.S.Lim, W.-C.Oh, K.B.Shim: J. Alloys Compd.390 (2005) 245. 10.1016/j.jallcom.2004.07.064Search in Google Scholar

[41] A.P.de Azevedo Marques, V.M.Longo, D.M.A.de Melo, P.S.Pizani, E.R.Leite, J.A.Varela: J. Solid State Chem.181 (2008) 12491257. 10.1016/j.jssc.2008.01.051Search in Google Scholar

Received: 2016-01-23
Accepted: 2016-06-02
Published Online: 2016-09-29
Published in Print: 2016-10-14

© 2016, Carl Hanser Verlag, München

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111416/html
Scroll to top button