Abstract
It is well known that traditional Chinese medicine (TCM) plays a more and more important role in modern pharmaceutical industry. It has been used in the therapy of many diseases for several thousand years because of its high pharmacological activity, low toxicity and rare side effects. In TCM, as an important group of secondary metabolites, essential oils have attracted a great deal of attention in recent years. Gas chromatography-mass spectrometry (GC-MS) is the most commonly used technique for the analysis of liposoluble constituents, especially volatile/semi-volatile compounds, and their metabolites in biological fluids due to its high resolution, selectivity and sensitivity. This review briefly describes the applications of GC-MS for the isolation and characterization of volatile compounds from TCM. In addition, GC-MS methods adopted in the metabolic profiling of volatile compounds in biological matrices are also described.
[1] Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils — A review. Food and Chemical Toxicology, 46, 446–475. DOI: 10.1016/j.fct.2007.09.106. http://dx.doi.org/10.1016/j.fct.2007.09.10610.1016/j.fct.2007.09.106Search in Google Scholar PubMed
[2] Cao, J., Qi, M. L., Zhang, Y., Zhou, S., Shao, Q. L., & Fu, R. N. (2006). Analysis of volatile compounds in Curcuma wenyujin Y. H. Chen et C. Ling by headspace solvent microextraction-gas chromatography-mass spectrometry. Analytica Chimica Acta, 561, 88–95. DOI: 10.1016/j.aca.2006.01.040. http://dx.doi.org/10.1016/j.aca.2006.01.04010.1016/j.aca.2006.01.040Search in Google Scholar
[3] Chen, K. J., & Li, C. S. (1998). Xin Bian Kang Shuai Lao Zhong Yao Xue (pp.27–28), Beijing: People’s Medical Publishing House. Search in Google Scholar
[4] Chen, M., Zhao, L., & Jia, W. (2005). Metabonomic study on the biochemical profiles of a hydrocortisone-induced animal model. Journal of Proteome Research, 4, 2391–2396. DOI: 10.1021/pr050158o. http://dx.doi.org/10.1021/pr050158o10.1021/pr050158oSearch in Google Scholar PubMed
[5] Chen, X. H., Liu, Q., Chen, X. X., & Zhang, L. (2008). Analysis and comparison of the volatile oil from different parts of Pogostemon cablin (Blanco) Benth by GC-MS. Journal of Liaoning University of TCM, 10, 127–128. Search in Google Scholar
[6] Deng, C. H., Yao, N., Wang, A. Q., & Zhang, X. M. (2005). Determination of essential oil in a traditional Chinese medicine, Fructus amomi by pressurized hot water extraction followed by liquid-phase microextraction and gas chromatography-mass spectrometry. Analytica Chimica Acta, 536, 237–244. DOI: 10.1016/j.aca.2004.12.044. http://dx.doi.org/10.1016/j.aca.2004.12.04410.1016/j.aca.2004.12.044Search in Google Scholar
[7] Deng, C., Mao, Y., Hu, F., Zhang, X. (2007). Development of gas chromatography-mass spectrometry following microwave distillation and simultaneous headspace single-drop microextraction for fast determination of volatile fraction in Chinese herb. Journal of Chromatography A, 1152, 193–198. DOI: 10.1016/j.chroma.2006.08.074. http://dx.doi.org/10.1016/j.chroma.2006.08.07410.1016/j.chroma.2006.08.074Search in Google Scholar PubMed
[8] Dong, L., Wang, J., Deng, C., & Shen, X. (2007a). Gas chromatography-mass spectrometry following pressurized hot water extraction and solid-phase microextraction for quantification of eucalyptol, camphor, and borneol in Chrysanthemum flowers. Journal of Separation Science, 30, 86–89. DOI: 10.1002/jssc.200600207. http://dx.doi.org/10.1002/jssc.20060020710.1002/jssc.200600207Search in Google Scholar PubMed
[9] Dong, L., Deng, C., Wang, J., & Shen, X. (2007b). Fast determination of paeonol in plasma by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Analytica Chimica Acta, 585, 76–80. DOI: 10.1016/j.aca.2006.12.024. http://dx.doi.org/10.1016/j.aca.2006.12.02410.1016/j.aca.2006.12.024Search in Google Scholar PubMed
[10] Dong, L., Deng, C., Wang, B., & Shen, X. (2007c). Fast determination of Z-ligustilide in plasma by gas chromatography/mass spectrometry following headspace single-drop microextraction. Journal of Separation Science, 30, 1318–1325. DOI: 10.1002/ jssc.200600379. http://dx.doi.org/10.1002/jssc.20060037910.1002/jssc.200600379Search in Google Scholar PubMed
[11] Drašar, P., & Moravcova, J. (2004). Recent advances in analysis of Chinese medical plants and traditional medicines. Journal of Chromatography B, 812, 3–21. DOI: 10.1016/j.jchromb.2004.09.037. 10.1016/j.jchromb.2004.09.037Search in Google Scholar PubMed
[12] Du, S. S., Xu, Y. C., & Wei, L. X. (2003). Analysis of the fatty acids in Tiannanxing (the Rhizome of Arisaema erubescens). Journal of Beijing University of Traditional Chinese Medicine, 26, 44–46. Search in Google Scholar
[13] Du, Z. Q., Xia, H. L., Jiang, H. X., Zhang, B. F., & Meng, F. (2003). GC-MS analysis of essential oil from Lindera strychnifolia Vill. Chinese Traditional Herbal Drugs, 34, 308–310. Search in Google Scholar
[14] Fan, X.-H., Cheng, Y.-Y., Ye, Z.-L., Lin, R.-C., & Qian, Z.-Z. (2006). Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines. Analytica Chimica Acta, 555, 217–224. DOI: 10.1016/j.aca.2005.09.037. http://dx.doi.org/10.1016/j.aca.2005.09.03710.1016/j.aca.2005.09.037Search in Google Scholar
[15] Gherman, C., Culea, M., & Cozar, O. (2000). Comparative analysis of some active principles of herb plants by GC/MS. Talanta, 53, 253–262. DOI: 10.1016/S0039-9140(00)00458-6. http://dx.doi.org/10.1016/S0039-9140(00)00458-610.1016/S0039-9140(00)00458-6Search in Google Scholar
[16] Gong, F., Liang, Y.-Z., Xie, P.-S., & Chau, F.-T. (2003). Information theory applied to chromatographic fingerprint of herbal medicine for quality control. Journal of Chromatography A, 1002, 25–40. DOI: 10.1016/S0021-9673(03)00648-4. http://dx.doi.org/10.1016/S0021-9673(03)00648-410.1016/S0021-9673(03)00648-4Search in Google Scholar
[17] Guo, F.-Q., Liang, Y.-Z., Xu, C.-J., & Huang, L.-F. (2003). Determination of the volatile chemical constituents of Notoptergium incium by gas chromatography-mass spectrometry iterative or non-iterative chemometrics resolution methods. Journal of Chromatography A, 1016, 99–110. DOI: 10.1016/S0021-9673(03)01327-X. http://dx.doi.org/10.1016/S0021-9673(03)01327-X10.1016/S0021-9673(03)01327-XSearch in Google Scholar
[18] Guo, F.-Q., Liang, Y.-Z., Xu, C.-J., Huang, L.-F., & Li, X.-N. (2004). Comparison of the volatile constituents of Artemisia capillaris from different locations by gas chromatography-mass spectrometry and projection method. Journal of Chromatography A, 1054, 73–79. DOI: 10.1016/j.chroma.2004.08.122. 10.1016/S0021-9673(04)01473-6Search in Google Scholar
[19] Hui, R.-H., Hou, D.-Y., Li, T.-C., Liu, X.-Y., & Li, X.-C. (2008). Study on the volatile constituents in leaf of Syringa Oblata Lindl. at different season. Journal of Chinese Mass Spectrometry Society, 29, 18–20. Search in Google Scholar
[20] Jiang, H., Xie, Z., Koo, H. J., McLaughlin, S. P., Timmermann, B. N., & Gang, D. R. (2006). Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry, 67, 1673–1685. DOI: 10.1016/j.phytochem.2005.08.001. http://dx.doi.org/10.1016/j.phytochem.2005.08.00110.1016/j.phytochem.2005.08.001Search in Google Scholar
[21] Kelly, L. (2001). Herbal medicines-analytical challenges faced by a regulatory laboratory. In International symposium on quality of traditional Chinese medicine with chromatographic fingerprint, 20–21 February 2001 (p. 57). Guangzhou, China. Search in Google Scholar
[22] Lao, S. C., Li, S. P., Kan, K. K. W., Li, P., Wan, J. B., Wang, Y. T., Dong, T. T. X., & Tsim, K. W. K. (2004). Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography-mass spectrometry coupled with pressurized liquid extraction. Analytica Chimica Acta, 526, 131–137. DOI: 10.1016/j.aca.2004. 09.050. http://dx.doi.org/10.1016/j.aca.2004.09.05010.1016/j.aca.2004.09.050Search in Google Scholar
[23] Li, F., Xiong, Z., Lu, X., Qin, F., & Li, X. (2006). Strategy and chromatographic technology of quality control for traditional Chinese medicines. Chinese Journal of Chromatography, 24, 537–544. DOI: 10.1016/S1872-2059(06)60022-9. http://dx.doi.org/10.1016/S1872-2059(06)60022-910.1016/S1872-2059(06)60022-9Search in Google Scholar
[24] Li, W.-F., Jiang, J.-G., & Chen, J. (2008a). Chinese medicine and its modernization demands. Archives of Medical Research, 39, 246–251. DOI: 10.1016/j.arcmed.2007.09.011. http://dx.doi.org/10.1016/j.arcmed.2007.09.01110.1016/j.arcmed.2007.09.011Search in Google Scholar PubMed
[25] Li, Q., Liu, L. Q., Xu, H. D., Liu, L. P., & You, X. Y. (2008b). Study on organic acids components in Chaenomeles sinensis (Thouin) Koehne. Acta Agriculturae Boreali-occidentalis Sinica, 17, 207–210. Search in Google Scholar
[26] Liang, Q., Liang, Z.-S., Wang, J.-R., & Xu, W.-H. (2009). Essential oil composition of Salvia miltiorrhiza flower. Food Chemistry, 113, 592–594. DOI: 10.1016/j.foodchem.2008.08.035. http://dx.doi.org/10.1016/j.foodchem.2008.08.03510.1016/j.foodchem.2008.08.035Search in Google Scholar
[27] Liang, Y.-Z., Xie, P., & Chan, K. (2004). Quality control of herbal medicines. Journal of Chromatography B, 812, 53–70. DOI: 10.1016/j.jchromb.2004.08.041. 10.1016/j.jchromb.2004.08.041Search in Google Scholar PubMed
[28] Lin, C.-T., Chen, C.-J., Lin, T.-Y., Tung, J. C., & Wang, S.-Y. (2008). Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata. Bioresource Technology, 99, 8783–8787. DOI: 10.1016/j.biortech.2008.04.041. http://dx.doi.org/10.1016/j.biortech.2008.04.04110.1016/j.biortech.2008.04.041Search in Google Scholar
[29] Liu, L., Song, G., & Hu, Y. (2007). GC-MS analysis of the essential oils of Piper nigrum L. and Piper longum L. Chromatographia, 66, 785–790. DOI: 10.1365/s10337-007-0408-2. http://dx.doi.org/10.1365/s10337-007-0408-210.1365/s10337-007-0408-2Search in Google Scholar
[30] Liu, S., Yi, L.-Z., & Liang, Y.-Z. (2008). Traditional Chinese medicine and separation science. Journal of Separation Science, 31, 2113–2137. DOI: 10.1002/jssc. 200800134. http://dx.doi.org/10.1002/jssc.20080013410.1002/jssc.200800134Search in Google Scholar
[31] Liu, Y. F., Yan, Y. N., & Wu, Y. (2004). GC-MS analysis of chemical components of the volatile oil from the aerial part of Bupleurum Chinense. Journal of Beijing University of Traditional Chinese Medicine, 5, 59–61. Search in Google Scholar
[32] Lu, H. M., Liang, Y. Z., Yi, L. Z., & Wu, X. J. (2006). Anti-inflammatory effect of Houttuynia cordata injection. Journal of Ethnopharmacology, 104, 245–249. DOI: 10.1016/j.jep. 2005.09.012. http://dx.doi.org/10.1016/j.jep.2005.09.01210.1016/j.jep.2005.09.012Search in Google Scholar
[33] Lu, X. H., & Chen, H. B. (2004). The challenges and opportunities of traditional Chinese medicine modernization. Journal of Practical Medicine Technology, 11, 2028–2029. Search in Google Scholar
[34] McCune, L. M., & Johns, T. (2007). Antioxidant activity relates to plant part, life form and growing condition in some diabetes remedies. Journal of Ethnopharmacology, 112, 461–469. DOI: 10.1016/j.jep.2007.04.006. http://dx.doi.org/10.1016/j.jep.2007.04.00610.1016/j.jep.2007.04.006Search in Google Scholar
[35] Message, G. M. (1984). Practical aspects of gas chromatography/mass spectrometry (pp. 351–352). New York: Wiley. Search in Google Scholar
[36] Mok, D. K. W., & Chau, F.-T. (2006). Chemical information of Chinese medicines: A challenge to chemist. Chemometrics and Intelligent Laboratory Systems, 82, 210–217. DOI: 10.1016/j.chemolab.2005.05.006. http://dx.doi.org/10.1016/j.chemolab.2005.05.00610.1016/j.chemolab.2005.05.006Search in Google Scholar
[37] Ni, S.-F., Fu, C.-X., Pan, Y.-J., Lu, Y.-B., Wu, P., & Gilbert, Y. S. (2004). Contrastive analysis of volatile oil from Serissa serissoides in diferent seasons. China Journal of Chinese Materia Medica, 29, 54–58. Search in Google Scholar
[38] Nicholson, J. K., & Wilson, I. D. (2003). Opinion: understanding “global” systems biology: metabonomics and the continuum of metabolism. Nature Reviews Drug Discovery, 2, 668–676. DOI: 10.1038/nrd1157. http://dx.doi.org/10.1038/nrd115710.1038/nrd1157Search in Google Scholar
[39] Qin, N. Y., Yang, F. Q., Wang, Y. T., & Li, S. P. (2007). Quantitative determination of eight components in rhizome (Jianghuang) and tuberous root (Yujin) of Curcuma longa using pressurized liquid extraction and gas chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 43, 486–492. DOI: 10.1016/j.jpba.2006.07.034. http://dx.doi.org/10.1016/j.jpba.2006.07.03410.1016/j.jpba.2006.07.034Search in Google Scholar
[40] Ruan, G.-H., & Li, G.-K. (2007). The study on the chromatographic fingerprint of Fructus xanthii by microwave assisted extraction coupled with GC-MS. Journal of Chromatography B, 850, 241–248. DOI: 10.1016/j.jchromb.2006.11.036. http://dx.doi.org/10.1016/j.jchromb.2006.11.03610.1016/j.jchromb.2006.11.036Search in Google Scholar
[41] Shen, S., Sha, Y., Deng, C., Zhang, X., Fu, D., & Chen, J. (2004). Quality assessment of Flos Chrysanthemi Indici from different growing areas in China by solid-phase microextraction-gas chromatography-mass spectrometry. Journal of Chromatography A, 1047, 281–287. DOI: 10.1016/j.chroma.2004.06.129. 10.1016/S0021-9673(04)01139-2Search in Google Scholar
[42] Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30, 3268–3295. DOI: 10.1002/jssc.200700261. http://dx.doi.org/10.1002/jssc.20070026110.1002/jssc.200700261Search in Google Scholar PubMed
[43] Taylor, J., King, R. D., Altmann, T., & Fiehn, O. (2002). Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics, 18, S241–S248. DOI: 10.1093/bioinformatics/18.suppl_2.S241 10.1093/bioinformatics/18.suppl_2.S241Search in Google Scholar PubMed
[44] Tyler, V. E. (2000). Herbal medicine: from the past to the future. Public Health Nutrition, 3, 447–452. DOI: 10.1017/S1368980000000525. http://dx.doi.org/10.1017/S136898000000052510.1017/S1368980000000525Search in Google Scholar PubMed
[45] Wang, H., Dong, X. P., Li, A., & Pan, X. L. (2008). Determination of fatty acids in Livistona chinensis R. Br. Journal of Chengdu University of Traditional Chinese Medicine, 31, 43–44. Search in Google Scholar
[46] Wang, X., Kapoor, V., & Smythe, G. A. (2003). Extraction and chromatography-mass spectrometric analysis of the active principles from selected Chinese herbs and other medicinal plants. The American Journal of Chinese Medicine, 31, 927–944. DOI: 10.1142/ S0192415X0300165X. http://dx.doi.org/10.1142/S0192415X0300165X10.1142/S0192415X0300165XSearch in Google Scholar PubMed
[47] Wei, Y. S. (2008). The analysis of fatty components from the root of Arctium lappa L. by GC-MS. Food Research and Development, 29, 99–97. Search in Google Scholar
[48] Wu, Q., Wang, M., & Simon, J. E. (2004). Analytical methods to determine phytoestrogenic compounds. Journal of Chromatography B, 812, 325–355. DOI: 10.1016/j.jchromb.2004. 08.008. Search in Google Scholar
[49] Xian, H.-M., Zhou, R., Liu, W., & Qin, J.-P. (2008). Determination of the essential oil from different parts of Gynura divaricata (L.) DC. by GC-MS. Lishizhen Medicine and Materia Medica Research, 19, 858–859. Search in Google Scholar
[50] Xie, G.-X., Qiu, Y.-P., Qiu, M.-F., Gao, X.-F., Liu, Y.-M., & Jia, W. (2007). Analysis of dencichine in Panax notoginseng by gas chromatography-mass spectrometry with ethyl chloroformate derivatization. Journal of Pharmaceutical and Biomedical Analysis, 43, 920–925. DOI: 10.1016/jpba.2006.09.009. http://dx.doi.org/10.1016/j.jpba.2006.09.009Search in Google Scholar
[51] Xie, P., Chen, S., Liang, Y.-Z., Wang, X., Tian, R., & Upton, R. (2006). Chromatographic fingerprint analysis-a rational approach for quality assessment of traditional Chinese herbal medicine. Journal of Chromatography A, 1112, 171–180. DOI: 10.1016/j.chroma.2005.12.091. http://dx.doi.org/10.1016/j.chroma.2005.12.09110.1016/j.chroma.2005.12.091Search in Google Scholar PubMed
[52] Ye, D. J. (1998). Science of Chinese medicinal herbs preparation (pp. 16–18). Shanghai: Shanghai Scientific & Technical Publishers. Search in Google Scholar
[53] Ye, D. J., & Yuan, S. T. (2005). Dictionary of Chinese herbal processing science (pp. 96–97). Shanghai: Shanghai Scientific & Technical Publishers. Search in Google Scholar
[54] Zhang, H.-B., Tao, Y., Hong, X.-K., & Wang, Z.-H. (2005a). Steriods in musk by gas chromatography/ mass spectrometry. Chinese Traditional Patent Medicine, 27, 79–83. Search in Google Scholar
[55] Zhang, L. L., Huang, C. Q., & Zhang, Z. Y. (2005b). Analysis of the chemical constituents in the Gelsemium elegans Benth by GC-MS. Journal of Chinese Medicinal Materials, 28, 779–781. Search in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether
Articles in the same Issue
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether