Home Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
Article
Licensed
Unlicensed Requires Authentication

Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?

  • Holger Braunschweig EMAIL logo , Carina Brunecker , Rian D. Dewhurst and Christoph Schneider
Published/Copyright: February 22, 2018
Become an author with De Gruyter Brill

Abstract

A set of 18 zerovalent group 8 metal complexes of the form [MLn(CO)5−n] (M=Fe, Ru, Os; L=neutral donor; n=0–2) were screened for their catalytic performance in aldehyde hydrosilylation and olefin hydroboration reactions. Although none of the untested catalysts were found to perform better than the previously-published complex [Fe(CO)4(IMes)] (IMes=1,3-Dimesityliidazol-2-ylidene), the results suggest that the Lewis basicity of the metal complex does not play a critical role in the catalysis of these two reactions.

Acknowledgment

The authors are grateful for financial support from the Deutsche Forschungsgemeinschaft.

References

[1] J. Bauer, H. Braunschweig, R. D. Dewhurst, Chem. Rev.2012, 112, 4329.10.1021/cr3000048Search in Google Scholar

[2] F. W. B. Einstein, R. K. Pomeroy, P. Rushman, A. C. Willis, J. Chem. Soc., Chem. Commun.1983, 854.10.1039/C39830000854Search in Google Scholar

[3] M. M. Fleming, R. K. Pomeroy, P. Rushman, J. Organomet. Chem.1984, 273, C33.10.1016/0022-328X(84)80536-7Search in Google Scholar

[4] F. W. B. Einstein, M. C. Jennings, R. Krentz, R. K. Pomeroy, P. Rushman, A. C. Willis, Inorg. Chem.1987, 26, 1341.10.1021/ic00255a030Search in Google Scholar

[5] H. B. Davis, F. W. B. Einstein, P. G. Glavina, T. Jones, R. K. Pomeroy, P. Rushman, Organometallics1989, 8, 1030.10.1021/om00106a026Search in Google Scholar

[6] R. J. Batchelor, H. B. Davis, F. W. B. Einstein, R. K. Pomeroy, J. Am. Chem. Soc.1990, 112, 2036.10.1021/ja00161a079Search in Google Scholar

[7] J. A. Shipley, R. J. Batchelor, F. W. B. Einstein, R. K. Pomeroy, Organometallics1991, 10, 3620.10.1021/om00056a037Search in Google Scholar

[8] R. J. Batchelor, F. W. B. Einstein, R. K. Pomeroy, J. A. Shipley, Inorg. Chem.1992, 31, 3155.10.1021/ic00040a029Search in Google Scholar

[9] F. Jiang, J. L. Male, K. Biradha, W. K. Leong, R. K. Pomeroy, M. J. Zaworotko, Organometallics1998, 17, 5810.10.1021/om980116sSearch in Google Scholar

[10] F. Jiang, H. A. Jenkins, K. Biradha, H. B. Davis, R. K. Pomeroy, M. J. Zaworotko, Organometallics2000, 19, 5049.10.1021/om990790pSearch in Google Scholar

[11] S. Bertsch, R. Bertermann, H. Braunschweig, A. Damme, R. D. Dewhurst, A. K. Phukan, C. Saalfrank, A. Vargas, B. Wennemann, Q. Ye, Angew. Chem. Int. Ed.2014, 53, 4240.10.1002/anie.201310520Search in Google Scholar PubMed

[12] S. Bertsch, H. Braunschweig, R. D. Dewhurst, K. Radacki, C. Saalfrank, B. Wennemann, Q. Ye, Organometallics2014, 33, 3649.10.1021/om5002414Search in Google Scholar

[13] H. Braunschweig, R. D. Dewhurst, F. Hupp, C. Schneider, Chem. Commun.2014, 50, 15685.10.1039/C4CC08508FSearch in Google Scholar

[14] For the synthesis of [Fe(CO)3(IMe)2], see: H. Braunschweig, R. D. Dewhurst, F. Hupp, C. Kaufmann, A. K. Phukan, C. Schneider, Q. Ye, Chem. Sci.2014, 5, 4099.10.1039/C4SC01539HSearch in Google Scholar

[15] For the synthesis of [Ru(CO)4(PMe3], [Ru(CO)3(PMe3)2], see: H. Braunschweig, C. Brunecker, R. D. Dewhurst, C. Schneider, B. Wennemann, Chem. Eur. J.2015, 21, 19195.10.1002/chem.201503536Search in Google Scholar PubMed

[16] H. Braunschweig, R. D. Dewhurst, C. Schneider, Organometallics2016, 35, 1002.10.1021/acs.organomet.6b00045Search in Google Scholar

[17] For the synthesis of [Os(CO)4(IMes)], [Os(CO)4(PMe3)], and [Os(CO)3(PMe3)2], see: R. Bissert, H. Braunschweig, R. D. Dewhurst, C. Schneider, Organometallics2016, 25, 2567.10.1021/acs.organomet.6b00495Search in Google Scholar

[18] H. Braunschweig, K. Gruss, K. Radacki, Angew. Chem., Int. Ed.2007, 46, 7782.10.1002/anie.200702726Search in Google Scholar PubMed

[19] H. Braunschweig, K. Gruss, K. Radacki, Inorg. Chem.2008, 47, 8595.10.1021/ic801293eSearch in Google Scholar PubMed

[20] J. Bauer, H. Braunschweig, R. D. Dewhurst, K. Radacki, Chem. – Eur. J.2013, 19, 8797.10.1002/chem.201301056Search in Google Scholar PubMed

[21] F. Hupp, M. Ma, F. Kroll, J. O. C. Jimenez-Halla, R. D. Dewhurst, K. Radacki, A. Stasch, C. Jones, H. Braunschweig, Chem. Eur. J.2014, 20, 16888.10.1002/chem.201404342Search in Google Scholar PubMed

[22] H. Braunschweig, R. D. Dewhurst, F. Hupp, J. Wolf, Chem. Eur. J.2015, 21, 1860.10.1002/chem.201405867Search in Google Scholar PubMed

[23] H. Braunschweig, M. A. Celik, R. D. Dewhurst, M. Heid, F. Hupp, S. S. Sen, Chem. Sci.2015, 6, 425.10.1039/C4SC02948HSearch in Google Scholar

[24] R. Bertermann, J. Böhnke, H. Braunschweig, R. D. Dewhurst, T. Kupfer, J. H. Muessig, L. Pentecost, K. Radacki, S. S. Sen, A. Vargas, J. Am. Chem. Soc.2016, 138, 16140.10.1021/jacs.6b10609Search in Google Scholar PubMed

[25] I. Bauer, H.-J. Knölker, Chem. Rev.2015, 115, 3170.10.1021/cr500425uSearch in Google Scholar PubMed

[26] R. Shang, L. Ilies, E. Nakamura, Chem. Rev.2017, 117, 9086.10.1021/acs.chemrev.6b00772Search in Google Scholar PubMed

[27] H. Li, L. C. Misal Castro, J. Zheng, T. Roisnel, V. Dorcet, J.-B. Sortais, C. Darcel, Angew. Chem. Int. Ed.2013, 52, 8045.10.1002/anie.201303003Search in Google Scholar PubMed

[28] For the synthesis of [Fe(CO)4(IMes)], and [Fe(CO)3(IMes)2], see: S. Warratz, L. Postigo, B. Royo, Organometallics2013, 32, 893.10.1021/om3012085Search in Google Scholar

[29] L. C. M. Castro, H. Li, J.-B. Sortais, C. Darcel, Green Chem.2015, 17, 2283.10.1039/C4GC01866DSearch in Google Scholar

[30] D. S. Mérel, M. L. T. Do, S. Gaillard, P. Dupau, J.-L. Renaud, Coord. Chem. Rev.2015, 288, 50.10.1016/j.ccr.2015.01.008Search in Google Scholar

[31] J. X. Zheng, J. B. Sortais, C. Darcel, ChemCatChem2014, 6, 763.10.1002/cctc.201301062Search in Google Scholar

[32] For the synthesis of [Fe(CO)4(CNtBu)], and [Fe(CO)3(CNtBu)2], see: M. O. Albers, N. J. Coville, E. Singleton, J. Chem. Soc., Dalton Trans.1982, 1069.10.1039/dt9820001069Search in Google Scholar

[33] For the synthesis of [Ru(CO)4(IMes)], see: M. I. Bruce, M. L. Cole, R. S. Fung, C. M. Forsyth, M. Hilder, P. C. Junk, K. Konstas, Dalton Trans.2008, 4118.10.1039/b805012kSearch in Google Scholar PubMed

[34] For the synthesis of [Fe(CO)4(PMe3)], see: M. L. Luetkens, A. P. Sattelberger, H. H. Murray, J. D. Basil, J. P. Fackler, R. A. Jones, D. E. Heaton, Inorg. Synth.1990, 28, 305.Search in Google Scholar

[35] For the synthesis of [Fe(CO)3(PMe3)2], see: S. K. Nayak, G. J. Farrell, T. J. Burkey, Inorg. Chem.1994, 33, 2236.10.1021/ic00088a028Search in Google Scholar

[36] For the synthesis of [Fe(CO)4(IMe)], see: B. Cetinkaya, P. Dixneuf, M. F. Lappert, J. Chem. Soc., Dalton Trans.1974, 1827.10.1039/dt9740001827Search in Google Scholar

[37] For the synthesis of [Fe(CO)4(PCy3)], see: K. H. Whitmire, T. R. Lee, J. Organomet. Chem.1985, 282, 98.Search in Google Scholar

[38] For the synthesis of [Fe(CO)3(PCy3)2], and [Ru(CO)3(IMes)2], see: C. Schneider, Dissertation, Universität Würzburg, Würzburg, 2016.Search in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2017-0193).


Received: 2017-12-12
Accepted: 2017-12-15
Published Online: 2018-2-22
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
  4. Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
  5. Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
  6. Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
  7. Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
  8. Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
  9. Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
  10. Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
  11. Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
  12. New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
  13. Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
  14. Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
  15. The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
  16. Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
  17. Notes
  18. Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
  19. A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization
Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2017-0193/html
Scroll to top button