Home Physical Sciences Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-isopropyl-1H-imidazol-3-ium hexafluoridophosphate(V), C20H34F12N4P2
Article Open Access

Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-isopropyl-1H-imidazol-3-ium hexafluoridophosphate(V), C20H34F12N4P2

  • Su-Qin Wu , Shi-Shun Chen , Yi-Chen Zou , Xu-Liang Nie ORCID logo and Wan-Ming Xiong EMAIL logo
Published/Copyright: January 15, 2024

Abstract

[C20H34F12N4P2], triclinic, P 1 (no. 2), a = 8.4322(10) Å, b = 13.6360(16) Å, c = 13.8381(16) Å, α = 89.9960(10)°, β = 105.5320(10)°, γ = 90.0150(10)°, V = 1533.0(3) Å3, Z = 2, Rgt (F) = 0.0613, wRref (F 2) = 0.1966, T = 296(2) K.

CCDC no.: 2322789

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless Block
Size: 0.30 × 0.20 × 0.10 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 0.25 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 26.9°, >99 %
N(hkl)measured, N(hkl)unique, R int: 13,314, 6492, 0.019
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 4018
N(param)refined: 494
Programs: Bruker ( 1 ), SHELX ( 2, 3 ), Diamond ( 4 )
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
P1 0.70985 (11) 1.07901 (6) 0.19317 (6) 0.0686 (3)
F1a 0.5387 (6) 1.1276 (6) 0.1704 (5) 0.131 (2)
F2a 0.7355 (12) 1.0978 (3) 0.3067 (3) 0.112 (2)
F3a 0.8846 (7) 1.0378 (7) 0.2080 (8) 0.177 (4)
F4a 0.6824 (9) 1.0662 (5) 0.0765 (3) 0.115 (2)
F5a 0.6440 (13) 0.9758 (5) 0.2044 (8) 0.145 (4)
F6a 0.7846 (13) 1.1818 (5) 0.1827 (8) 0.152 (4)
P2 0.79012 (11) 0.57903 (6) 0.30682 (6) 0.0685 (3)
F7a 0.7660 (12) 0.5977 (3) 0.1933 (3) 0.109 (2)
F8a 0.7525 (14) 0.6876 (5) 0.3226 (8) 0.162 (4)
F9a 0.8130 (9) 0.5663 (4) 0.4234 (3) 0.1120 (18)
F10a 0.8221 (12) 0.4700 (4) 0.2869 (7) 0.128 (3)
F11a 0.9584 (6) 0.6295 (5) 0.3300 (5) 0.136 (3)
F12a 0.6180 (7) 0.5352 (7) 0.2898 (7) 0.187 (4)
O1 0.6158 (3) 0.66688 (19) −0.0489 (2) 0.0961 (8)
O2 0.4045 (3) 0.68151 (16) 0.01884 (17) 0.0766 (6)
N1 0.7834 (3) 0.81501 (16) 0.07147 (17) 0.0558 (6)
N2 1.0457 (3) 0.8384 (2) 0.1159 (2) 0.0772 (8)
C1 1.2447 (6) 0.9430 (4) 0.2313 (5) 0.151 (2)
H1A 1.190132 0.994188 0.187135 0.227*
H1B 1.360157 0.957420 0.254316 0.227*
H1C 1.199188 0.938933 0.287818 0.227*
C2 1.2782 (6) 0.7585 (4) 0.2339 (4) 0.1177 (16)
H2A 1.217085 0.748501 0.282538 0.176*
H2B 1.393120 0.764540 0.267628 0.176*
H2C 1.261782 0.703578 0.188913 0.176*
C3 1.2209 (5) 0.8483 (4) 0.1770 (4) 0.1190 (17)
H3 1.285777 0.853379 0.128078 0.143*
C4 0.9893 (5) 0.8664 (3) 0.0183 (3) 0.0809 (10)
H4 1.052485 0.891397 −0.021759 0.097*
C5 0.9181 (4) 0.8081 (2) 0.1468 (2) 0.0688 (8)
H5 0.922549 0.785600 0.210956 0.083*
C6 0.8294 (4) 0.8518 (2) −0.0090 (2) 0.0743 (9)
H6 0.759447 0.864390 −0.072190 0.089*
C7 0.6168 (4) 0.7911 (2) 0.0738 (2) 0.0604 (7)
H7A 0.546561 0.847645 0.052210 0.072*
H7B 0.616003 0.775797 0.142128 0.072*
C8 0.5489 (4) 0.7051 (2) 0.0070 (2) 0.0648 (8)
C9 0.3163 (6) 0.6028 (3) −0.0448 (4) 0.1068 (14)
H9A 0.295235 0.621068 −0.114864 0.128*
H9B 0.382154 0.543447 −0.033855 0.128*
C10 0.1636 (7) 0.5859 (5) −0.0202 (5) 0.152 (2)
H10A 0.105122 0.533455 −0.060780 0.228*
H10B 0.098045 0.644480 −0.032834 0.228*
H10C 0.185436 0.568614 0.049334 0.228*
O3 0.8841 (3) 0.16694 (19) 0.5493 (2) 0.0961 (8)
O4 1.0958 (3) 0.18154 (16) 0.48135 (17) 0.0765 (6)
N3 0.4546 (3) 0.3384 (2) 0.3842 (2) 0.0772 (8)
N4 0.7166 (3) 0.31522 (16) 0.42840 (17) 0.0564 (6)
C11 0.2559 (6) 0.4433 (4) 0.2683 (5) 0.151 (2)
H11A 0.303609 0.494916 0.314079 0.227*
H11B 0.140440 0.455601 0.241002 0.227*
H11C 0.308722 0.440901 0.214959 0.227*
C12 0.2788 (5) 0.3482 (4) 0.3224 (4) 0.1201 (17)
H12 0.213690 0.353218 0.371180 0.144*
C13 0.2216 (6) 0.2583 (4) 0.2656 (4) 0.1162 (16)
H13A 0.280297 0.249432 0.215577 0.174*
H13B 0.105927 0.263505 0.233612 0.174*
H13C 0.241224 0.203171 0.310349 0.174*
C14 0.5099 (5) 0.3666 (3) 0.4813 (3) 0.0800 (9)
H14 0.446286 0.391804 0.520950 0.096*
C15 0.5816 (4) 0.3083 (2) 0.3534 (3) 0.0702 (8)
H15 0.576901 0.285804 0.289287 0.084*
C16 0.6706 (5) 0.3518 (3) 0.5093 (3) 0.0755 (9)
H16 0.740241 0.364061 0.572620 0.091*
C17 0.8835 (4) 0.2909 (2) 0.4260 (2) 0.0604 (7)
H17A 0.954059 0.347416 0.447200 0.073*
H17B 0.884105 0.275125 0.357737 0.073*
C18 0.9513 (4) 0.2050 (2) 0.4933 (2) 0.0658 (8)
C19 1.1840 (6) 0.1029 (3) 0.5448 (4) 0.1064 (14)
H19A 1.205449 0.121159 0.614827 0.128*
H19B 1.118012 0.043589 0.533929 0.128*
C20 1.3361 (7) 0.0858 (5) 0.5202 (5) 0.148 (2)
H20A 1.313914 0.066974 0.450987 0.222*
H20B 1.395388 0.034195 0.561760 0.222*
H20C 1.400898 0.144624 0.531305 0.222*
F3Ab 0.798 (5) 1.0423 (10) 0.122 (2) 0.235 (13)
F4Ab 0.546 (2) 1.0548 (14) 0.1150 (17) 0.212 (9)
F6Ab 0.709 (4) 1.1892 (8) 0.1767 (12) 0.171 (12)
F1Ab 0.594 (4) 1.0978 (12) 0.265 (3) 0.221 (12)
F2Ab 0.856 (3) 1.0908 (16) 0.2828 (16) 0.222 (11)
F5Ab 0.704 (3) 0.9688 (8) 0.2159 (13) 0.149 (10)
F12Ab 0.648 (3) 0.5917 (15) 0.2156 (14) 0.207 (9)
F10Ab 0.912 (4) 0.5991 (12) 0.240 (3) 0.237 (13)
F7Ab 0.692 (2) 0.6742 (14) 0.3070 (16) 0.167 (10)
F9Ab 0.892 (3) 0.4853 (15) 0.3105 (19) 0.187 (13)
F11Ab 0.938 (3) 0.5587 (13) 0.3954 (18) 0.226 (11)
F8Ab 0.674 (4) 0.5416 (10) 0.363 (3) 0.238 (14)
  1. aOccupancy: 0.678 (7), bOccupancy: 0.322 (7).

1 Source of materials

In a round-bottomed flask, isopropylimidazole (6.61 g, 0.06 mol) and ethyl bromoacetate (11.19 g, 0.067 mol) were added and dissolved in 60 mL of THF, and the reaction was carried out with stirring after mixing well at −5 °C for 1.5 h, and then stirred at ambient temperature for 5–8 h after the reaction was finished. The obtained mixed products were washed with ethyl acetate and anhydrous ether three times each, after pouring out the acetonitrile in the upper layer, respectively. Then dried under vacuum for 0.5 h. An oily liquid was obtained with a yield of 98.67 %. The dried intermediate product (0.69 g, 2.5 mmol) and potassium hexafluorophosphate (0.46 g, 2.5 mmol) were dissolved in 50 mL of deionized water in a round-bottomed flask and the reaction was carried out with stirring at 85 °C for 6 h. After reaching the reaction time, the mixture was cooled down to room temperature naturally. The product was washed and filtered with deionized water and air dried to give a yield of 16.88 %.

2 Experimental details

All H atoms were included in calculated positions and refined as riding atoms, with C–H = 0.90–0.97 Å with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for all other H atoms.

3 Comment

Ionic liquids are green organic liquid molten salts, which consist of ions with different charge off-domain properties and molecular symmetry. Ionic multifunctionality can be achieved by combining different anions and cations, or by functionalization with different molecular and atomic groups, resulting in surprising kinetic properties ( 5, 6, 7, 8, 9 ). Ionic liquids can be used as green organic solvents. The characteristic of monoimidazolium ionic liquids is thermal stability, nonvolatility, and hydrophilicity ( 10 ), and the introduction of hexafluorophosphate ions also improves the oxidative stability of ionic liquids ( 11 ). In addition, the introduction of ester group in the side chain of monoimidazole ionic liquids can increase the biodegradability of ionic liquids, and also has a low toxicity ( 12, 13, 14 ), which is in line with the concept of green development, and for this reason we have carried out a number of studies ( 15, 16, 17 ).

In the cation of the title compound, bond lengths and angles are very similar to those given in the literature ( 15, 16, 17, 18 ). Both hexafluorophosphate ions in the molecule are disordered. All atoms of imidazole ring are on the same plane, and the dihedral angle of the two imidazole rings is 43.07(17)°. The dihedral angles of imidazole ring, the carboxyl group and isopropyl group are 62.9(2)°, 62.8(3)°, 79.6(3)° and 79.8(2)°, respectively. The torsion angles of C5–N1–C7–C8, N1–C7–C8–O2, C7–C8–O2–C9, C8–O2–C9–C10, C15–N4–C17–C18, N4–C17–C18–O4, C17–C18–O4–C19 and C18–O4–C19–C20 are −114.6(3)°, 174.5(2)°, 176.6(3)°, 178.9(4)°, −114.7(3)°, 174.7(2)°, 176.8(3)° and 178.7(4)°, respectively.


Corresponding author: Wan-Ming Xiong, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang/College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, People’s Republic of China, E-mail:

Acknowledgments

X-ray data were collected at Instrumental Analysis Center Nanchang Hangkong University, Nanchang, 330063, People’s Republic of China.

  1. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: This work was supported by the Natural Science Foundation of Jiangxi Province of China (No. 20202BABL205003), the Research Foundation of Education Department of Jiangxi Province of China (No. GJJ210430) and National College Students Innovation and Entrepreneurship Training Program (No. S202310410048 and 202310410313).

References

1. Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 4.0; Crystal Impact: Bonn, Germany, 2015.Search in Google Scholar

5. Liu, K. X., Wang, Z. Y., Shi, L. Y., Jungsuttiwong, S., Yuan, S. Ionic Liquids for High Performance Lithium Metal Batteries. J. Energy Chem. 2021, 59, 320–333. https://doi.org/10.1016/j.jechem.2020.11.017.Search in Google Scholar

6. Yuan, K., Feng, K. H., Liao, S., Liao, X. N., Zou, Y. C., Hou, D., Nie, X. L., Xiong, W. M. Synthesis, Characterization, and Electrochemical Properties of Phenyl-Coupled Diimidazolium Hexafluorophosphate Ionic Liquids. J. Mol. Liq. 2023, 392, 123515. https://doi.org/10.1016/j.molliq.2023.123515.Search in Google Scholar

7. Wang, G. W., Xu, X. Q., Sun, Y., Zhuang, L. H., Yao, C. Relationship Between Structure and Biodegradability of Gemini Imidazolium Surface Active Ionic Liquids. J. Mol. Liq. 2019, 278, 145–155. https://doi.org/10.1016/j.molliq.2018.12.066.Search in Google Scholar

8. Antony, F. M., Wasewar, K. L. Ionic Liquids as Green Solvents in Process Industry for Reaction and Separation: Emphasizing on Protocatechuic Acid Recovery. Chem. Eng. Commun. 2023, 210, 2138–2145. https://doi.org/10.1080/00986445.2023.2185519.Search in Google Scholar

9. Wang, Y. L., Li, B., Sarman, S., Mocci, F., Lu, Z. Y., Yuan, J. Y., Laaksonen, A., Fayer, M. D. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem. Rev. 2020, 120, 5798–5877. https://doi.org/10.1021/acs.chemrev.9b00693.Search in Google Scholar PubMed PubMed Central

10. Shi, Y. T., Fu, Y., Xu, S. Y., Huang, H. J., Zhang, S. T., Wang, Z., Li, W., Li, H., Gao, F. Strengthened Adsorption and Corrosion Inhibition of New Single Imidazole-Type Ionic Liquid Molecules to Copper Surface in Sulfuric Acid Solution by Molecular Aggregation. J. Mol. Liq. 2021, 338, 116675. https://doi.org/10.1016/J.molliq.2021.116675.Search in Google Scholar

11. Wang, D., Takiyama, M., Hwang, J., Matsumoto, K., Hagiwara, R. A Hexafluorophosphate-Based Ionic Liquid as Multifunctional Interfacial Layer between High Voltage Positive Electrode and Solid-State Electrolyte for Sodium Secondary Batteries. Adv. Energy Mater. 2023, 13, 2301020. https://doi.org/10.1002/aenm.202301020.Search in Google Scholar

12. Xiong, W. M., Chen, J., Zhao, W., Zhou, Y. H., Jing, C., Nie, X. L. Crystal Structure of 1,1′-Methylenebis(3-Ethyl-1H-Imidazol-3-Ium) Bis(Hexafluorophosphate(V)), C11H18F12N4P2. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 7–9. https://doi.org/10.1515/ncrs-2019–0430.10.1515/ncrs-2019-0430Search in Google Scholar

13. Gui, H. G., Li, Y., Chen, S. Y., Xu, P., Zheng, B., Ding, Y. S. Effects of Biodegradable Imidazolium-Based Ionic Liquid with Ester Group on the Structure and Properties of PLLA. Macromol. Res. 2014, 22, 583–591. https://doi.org/10.1007/s13233–014–2085-y.10.1007/s13233-014-2085-ySearch in Google Scholar

14. Teresa, M. G., Isabel, R., Lourdes, P., Angeles, P., Francesc, C. Aggregation Behavior and Antimicrobial Activity of Ester-Functionalized Imidazolium- and Pyridinium-Based Ionic Liquids in Aqueous Solution. J. Am. Chem. Soc. 2013, 29, 2536–2545. https://doi.org/10.1021/la304752e.Search in Google Scholar PubMed

15. Yuan, K., Xiong, W. M., Nie, X. L., Peng, D. Y., Chen, J. Crystal Structure of 3-(2-Ethoxy-2-Oxoethyl)-1-Ethyl-1H-Imidazol-3-Ium hexafluoridophos-Phate(V), C9H15F6N2O2P. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 1015–1017. https://doi.org/10.1515/ncrs-2021-0194.Search in Google Scholar

16. Huang, T., Nie, X. L., Chen, J., Zhao, W., Xiong, W. M. Crystal Structure of 3-(2-Ethoxy-2-Oxoethyl)-1-Methyl-1H-Imidazol-3-Iumhexafluoridophosphate(V), C8H13F6N2O2P. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 1077–1079. https://doi.org/10.1515/ncrs-2019–0273.10.1515/ncrs-2019-0273Search in Google Scholar

17. Xiong, W. M., Huang, T., Liao, S., Chen, J., Nie, X. L. Crystal Structure of 3-(2-Ethoxy-2-Oxoethyl)-1-Vinyl-1H-Imidazol-3-Ium Hexafluoridophosphate(V), C9H13F6N2O2P. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1029–1031. https://doi.org/10.1515/ncrs-2020–0147.10.1515/ncrs-2020-0147Search in Google Scholar

18. Arnold, P. L., Casely, I. J., Turner, Z. R., Bellabarba, R., Tooze, R. B. Magnesium and Zinc Complexes of Functionalised, Saturated N-Heterocyclic Carbene Ligands: Carbene Lability and Functionalisation, and Lactidepolymerisation Catalysis. Dalton Trans. 2009, 35, 7236–7247; https://doi.org/10.1039/B907034F.Search in Google Scholar

Received: 2023-12-04
Accepted: 2023-12-31
Published Online: 2024-01-15
Published in Print: 2024-04-25

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Solvothermal synthesis and crystal structure of aqua-tris(p-acetamidobenzoate-κ2O,O′)-(2,2′-bipyridine-κ2N,N′)terbium(III) - water - methanol (1/1/1)
  4. Crystal structure of hexaaquazinc(II) catena-poly[bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O,O′)-bis(μ2-1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O:O′)trizinc(II)] hexahydrate C26H36N4O20Zn2
  5. The crystal structure of valinyl-N-ium-4-(5-(thiophen-2-yl)isoxazol-3-yl)phenyl trifluoroacetate
  6. Crystal structure of bis(3,5-diisopropyl-1H-pyrazol-4-ammonium) tetrafluoroterephthalate, 2[C9H18N3][C8F4O4]
  7. Crystal structure of aqua-octakis(μ3-salicylato)-(1,10-phenanthroline)-(acetonitrile)-dicobalt(II)-trititanium(IV), C70H45N3O25Co2Ti3
  8. Crystal structure of catena-poly[aqua-(μ2-4,4′-diimidazole diphenyl ether-κ2N:N′)-(sulfato-κ1O)-cobalt(II)] – dimethylformamide (2/1), C39H37CoN9O8S
  9. Crystal structure of (5R,8R,9R,10R,12R, 13R,14R,17S)-2-(E-3-fluorobenzylidene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a]phenanthren-3-one, C37H53FO3
  10. Crystal structure of (Z)-4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenyl diphenylphosphinate, C30H25O7P
  11. Crystal structure of 3-((5-methylpyridin-2-yl)amino)-1-phenylpropan-1-one, C15H16N2O
  12. The crystal structure of (R)-9-(5-methoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ylidene)-9H-thioxanthene, C28H22OS
  13. Crystal structure of diaqua-bis[1-(1-(hydroxymethyl)-1H-pyrazol-3-yl)-5-methyl-1H-1,2,3-triazole-4-carboxylato-κ2N,O)] manganese(II), C16H20MnN10O8
  14. The crystal structure of t-butyl 7-[4-(4-fluorophenyl)-2-[(methanesulfonyl)(methyl)amino]-6-(propan-2-yl)pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoate, C26H36FN3O6S
  15. The crystal structure of samarium sulfate pentahydrate, Sm2(SO4)3(H2O)5
  16. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ 4 N,O,O,O)-zinc(II)] monohydrate, C12H15NO9Zn
  17. The crystal structure of 2,3-difluoro-11H-benzo-[4,5]imidazo[2,1-a]isoindol-11-one, C14H6F2N2O
  18. The crystal structure of 2,3-di(9H-carbazol-9-yl)-9H-fluoren-9-one, C37H22N2O
  19. The crystal structure of 5-(2-chloro-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-10,11-dihydro-5H-dibenzo[b,f]azepine, C40H39ClN2
  20. Crystal structure of 2-bromo-1-hydroxy-3-(3-methylbut-2-enyloxy)-9H-xanthen-9-one, C18H15BrO4
  21. Crystal structure of bis(μ2-benzenesulfonato-κ2O:O′)-bis(μ2-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))-bis(2-methoxyphenolato-κ6O,O′:O′,N,N′,O′′:O′′,O′′′))disodium(I)dicopper(II)
  22. The crystal structure of (E)-1,2-bis(benzo[e][1,2]azaborinin-2(1H)-yl)ethene, C18H16B2N2
  23. Crystal structure of 3-oxo-urs-12-en-28-benzyl ester, C37H52O3
  24. The crystal structure of ethyl (E)-1-chloro-3-(4-chloro-1-methyl-1H-indole-2-carbonyl)-4-oxo-2-phenylcyclooct-2-ene-1-carboxylate, C27H25Cl2NO4
  25. The crystal structure of 4,4′-((5-bromo-2-iodo-1,3-phenylene)bis(oxy))bis(tert-butylbenzene) ─ ethanol (2/1), C26H28BrIO2
  26. Crystal structure of (E)-1-(4-(benzyloxy)-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C18H19NO3
  27. The crystal structure of N1,N3-bis(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)\ propanediamide hydrate, C25H26N6O4, 2(H2O)
  28. The crystal structure of 2,5-bis[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]cyclohexa-2,5-diene-1,4-dione, C28H26N6O4
  29. Crystal structure of 3,4-bis[2-(hydroxymethyl)-pyrrolidin-1-yl] cyclobut-3-ene-1,2-dione hydrate, C14H22N2O5
  30. The crystal structure of 2-(3,4–dichlorobenzyl)-1H-benzimidazole, C14H10Cl2N2
  31. The crystal structure of 2-(2-((4,6-dimethoxypyrimidin-2-yl)oxy)phenyl)-4-(piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidine, C28H27N5O4
  32. The crystal structure of 6-(benzofuran-2-yl)-2-oxo-4,5-diphenyl-3,4-dihydro-2H-pyran-3-carbonitrile, C26H17NO3
  33. Crystal structure of N-(4-bromobenzyl)-3-(difluoromethyl)-1-methyl-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide, C18H15BrF2N4O
  34. The crystal structure of the host-guest complex: N-{5-[2-(2,6-dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl}-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide-diethyl ether (2/1)
  35. The crystal structure of (Z)-4-amino-N-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H17N3O2
  36. The crystal structure of diethyl 1,4-dihydro-2,6-dimethyl-4-(3-cyanophenyl)-3,5-pyridinedicarboxylate, C20H22N2O4
  37. Crystal structure of 3-(5-((4-(difluoromethoxy)phenyl) sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl) oxetane-3-carboxamide, C17H19F2N3O5S
  38. Crystal structure of 2-((2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)amino)-N-(2-(4-methylpiperazin-1-yl)ethyl)benzamide hydrate, C25H37Cl2N5O6
  39. Crystal structure of 3-(benzo[d]thiazol-2-yl)-5-bromo-2-hydroxybenzaldehyde, C14H8BrNO2S
  40. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide, C11H10F2N4O
  41. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-isopropyl-1H-imidazol-3-ium hexafluoridophosphate(V), C20H34F12N4P2
  42. Crystal structure of ethyl 5,6-dichloro-2-methyl-2,3-dihydro-1 H-benzo[d]imidazole-2-carboxylate, C11H12Cl2N2O2
  43. The crystal of structure of (OC-6-22)-pentakis(acetonitrile)bromidoruthenium(II)bromide monohydrate, C10H15Br2N5Ru
  44. Crystal structure of (2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-(((4aS,5R,6S)-1-oxo-5-vinyl-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-6-yl)oxy)tetrahydro-2H-pyran-3-yl 2,3-dihydroxybenzoate hydrate, C23H26O12·H2O
  45. The crystal structure of (E)-4-amino-N′-(1-(4-fluorophenyl)propylidene)benzohydrazide, C16H16FN3O
  46. The crystal structure of 2′-(9H-carbazol-9-yl)-[1,1′-binaphthalen]-2-amine, C32H22N2
  47. Crystal structure of poly[μ3-diiodido-[μ2-di(1H-pyrazol-1-yl)methane-κ2N,N′)]dicopper(I)], C7H8Cu2I2N4
  48. Crystal structure of 3-amino-N′-hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  49. The crystal structure of 1,3-diacetyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione, C8H10O4N4
  50. Crystal structure of catena-poly[aqua-(μ2-1,4-diazabicyclo[2.2.2]octane-k2N: N′)-bis(sorbato-κ1O)-copper(II), C18H28CuN2O5
  51. Crystal structure of catena-poly[triaqua-(μ2 -1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ3O,O′:O′′)manganese(II)], C12H12N2O8Mn
  52. The crystal structure of [hexaaquamagnesium(II)] 4-[(pyridine-4-carbonyl)-amino]-phthalate trihydrate, C14H26N2O14Mg
  53. Crystal structure of 1-(p-tolylphenyl)-4-(2-furoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O3
  54. The crystal structure of bis(1,4,7,10,13-pentaoxacyclopentadecane)-potassium(I) dichloridocopper(I), C20H40Cl2CuKO10
  55. The crystal structure of tris(tetra-n-butylammonium) hexanitrato-κ2O,O′-lanthanium(III) C48H108N9O18La
Downloaded on 5.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0529/html
Scroll to top button