Home Physical Sciences Crystal structure of catena-poly[aqua-(μ2-4,4′-diimidazole diphenyl ether-κ2N:N′)-(sulfato-κ1O)-cobalt(II)] – dimethylformamide (2/1), C39H37CoN9O8S
Article Open Access

Crystal structure of catena-poly[aqua-(μ2-4,4′-diimidazole diphenyl ether-κ2N:N′)-(sulfato-κ1O)-cobalt(II)] – dimethylformamide (2/1), C39H37CoN9O8S

  • Xinyan Ding ORCID logo EMAIL logo and Liguo Gao
Published/Copyright: February 6, 2024

Abstract

C39H37CoN9O8S, monoclinic, P21/m (no. 11), a = 8.5267(5) Å, b = 20.1577(12) Å, c = 11.2333(7) Å, β = 105.493(7)°, V = 1860.6(2) Å3, Z = 2, Rgt(F) = 0.0443, wRref(F2) = 0.0968, T = 293(2) K.

CCDC no.: 2326681

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Pink block
Size: 0.25 × 0.23 × 0.20 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.59 mm−1
Diffractometer, scan mode: Multiwire proportional, φ and ω
θmax, completeness: 25.0°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 7697, 3369, 0.032
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 2666
N(param)refined: 277
Programs: Bruker [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 −0.2376 (3) 0.15361 (13) 1.0816 (2) 0.0315 (6)
H1 −0.131785 0.169445 1.110861 0.038*
C2 −0.4937 (3) 0.13847 (13) 1.0550 (2) 0.0329 (6)
H2 −0.598881 0.142314 1.063386 0.039*
C3 −0.4481 (3) 0.09702 (15) 0.9766 (2) 0.0379 (7)
H3 −0.514806 0.067728 0.921745 0.045*
C4 −0.1836 (3) 0.07451 (13) 0.9259 (2) 0.0278 (6)
C5 −0.2102 (3) 0.00818 (13) 0.8931 (2) 0.0289 (6)
H5 −0.289097 −0.015694 0.918228 0.035*
C6 −0.1203 (3) −0.02239 (12) 0.8236 (2) 0.0283 (6)
H6 −0.139365 −0.066621 0.800791 0.034*
C7 −0.0019 (3) 0.01297 (13) 0.7881 (2) 0.0283 (6)
C8 0.0306 (3) 0.07787 (13) 0.8253 (2) 0.0334 (6)
H8 0.114252 0.100704 0.804424 0.040*
C9 −0.0611 (3) 0.10920 (13) 0.8938 (2) 0.0325 (6)
H9 −0.040440 0.153186 0.917834 0.039*
C10 0.1869 (3) 0.01200 (13) 0.6647 (2) 0.0310 (6)
C11 0.1286 (3) 0.05905 (13) 0.5740 (3) 0.0369 (7)
H11 0.018112 0.069050 0.550017 0.044*
C12 0.2337 (3) 0.09116 (13) 0.5190 (2) 0.0338 (7)
H12 0.194722 0.122912 0.458282 0.041*
C13 0.3982 (3) 0.07573 (13) 0.5551 (2) 0.0267 (6)
C14 0.4533 (3) 0.02606 (13) 0.6411 (2) 0.0323 (6)
H14 0.562664 0.014131 0.662296 0.039*
C15 0.3476 (3) −0.00582 (13) 0.6956 (2) 0.0328 (6)
H15 0.385153 −0.039275 0.753200 0.039*
C16 0.6769 (3) 0.11806 (15) 0.5639 (3) 0.0423 (8)
H16 0.734463 0.098625 0.637761 0.051*
C17 0.7374 (3) 0.15761 (15) 0.4915 (3) 0.0436 (8)
H17 0.845980 0.170137 0.507430 0.052*
C18 0.4829 (3) 0.14861 (13) 0.4028 (2) 0.0283 (6)
H18 0.380958 0.153100 0.347087 0.034*
C19 0.5087 (7) 0.250000 0.7276 (7) 0.101 (2)
H19A 0.538273 0.250000 0.651139 0.152*
H19Ba 0.551473 0.209520 0.768599 0.152*
H19Ca 0.552692 0.287060 0.779449 0.152*
C20 0.2594 (7) 0.250000 0.8042 (5) 0.0782 (17)
H20Aa 0.322357 0.277600 0.869247 0.117*
H20Ba 0.257097 0.205530 0.834298 0.117*
H20Ca 0.150347 0.266870 0.777138 0.117*
C21 0.2374 (7) 0.250000 0.5874 (5) 0.0575 (13)
H21 0.287147 0.250000 0.523060 0.069*
Co1 −0.37129 (5) 0.250000 1.25292 (4) 0.02256 (15)
N1 −0.3618 (2) 0.17436 (10) 1.12089 (18) 0.0281 (5)
N2 −0.2835 (3) 0.10630 (10) 0.99339 (19) 0.0287 (5)
N3 0.5128 (3) 0.11165 (10) 0.50787 (19) 0.0297 (5)
N4 0.6160 (3) 0.17719 (10) 0.39000 (19) 0.0308 (5)
N5 0.3324 (5) 0.250000 0.7020 (4) 0.0522 (10)
O1 0.0836 (2) −0.02233 (9) 0.71999 (18) 0.0409 (5)
O2 −0.8828 (4) 0.250000 1.0327 (3) 0.0682 (10)
O3 −0.6276 (3) 0.250000 1.1882 (3) 0.0446 (7)
O4 −0.8538 (3) 0.30841 (13) 1.2195 (2) 0.0843 (9)
O5 −0.1114 (3) 0.250000 1.3192 (2) 0.0410 (7)
H5Aa −0.081828 0.278260 1.377047 0.061*
H5Ba −0.070488 0.260090 1.260447 0.061*
O6 0.0873 (4) 0.250000 0.5605 (3) 0.0722 (11)
S1 −0.80447 (10) 0.250000 1.16299 (8) 0.0269 (2)
  1. aOccupancy: 0.5.

1 Source of material

A mixture of Co(NO3)2·6H2O (1 mmol, 291.0 mg), 4,4′-diimidazole diphenyl ether (dide) (1 mmol, 302.3 mg), N,N-dimethylacetamide (1 mL) and H2SO4 (1.5 mL, 0.01 M) were placed in a 20 mL Teflon-lined stainless steel reactor and then heated at 358 K for three days to afford pink block crystals in a yield of 46 %.

2 Experimental details

The positions of hydrogen atoms belonging to the Csp2 and Csp3 carbon atoms were geometrically optimized applying the riding model (Csp2–H, 0.93 Å; Uiso(H) = 1.2Ueq(C) and Csp3(methyl)–H, 0.96 Å; Uiso(H) = 1.5Ueq(C), respectively). The hydrogen atoms bonded to C19, C20 and O5 exhibit orientational disorder, with an occupancy of 0.5 each.

3 Comment

The rational design and synthesis of coordination polymers (CPs) have attracted considerable interest not only due to their diverse architectures but also due to their tremendous potential as functional materials in many fields [3], [4], [5], [6]. Compared with the simple coordination mode of rigid ligands, some bonds in flexible ligands can rotate freely, so flexible ligands can freely change their configuration to meet different coordination environments, so as to form complexes with unique structure and function [7], [8], [9], [10]. The 4,4′-diimidazole diphenyl ether (dide) is known as a functionalized flexible N-containing bridging ligand with a promising ligation ability because its conformational freedom and flexibility can be fine-tuned to match with the coordination preference of metal centers [11], [12], [13], [14], [15], [16], [17], [18], [19]. To further expand this research, a new Co(II) coordination polymer from the dide ligand together with cobalt nitrate was successfully synthesized.

Since the Co1, O2, O3, O5, O6, N5, C19, C20, C21 and S1 atoms are placed on a twofold axis, the asymmetric unit of the title compound is composed of one half of a cobalt(II) ion, one dide ligand, one half of a water ligand, one half of a sulfate ion and one half of a free DMF molecule (see the figure).

The cobalt(II) ion has an octahedral coordination geometry [20], which is linked by two oxygen atoms from sulfate ion and water molecule as well as four nitrogen atoms from four symmetry related dide ligands. Both the bond lengths and the angles are in the expected ranges. The Co–O bond lengths range from 2.111(2) to 2.141(3) Å. The Co–N bond lengths are 2.144(2) Å and 2.151(2) Å. The bridging dide ligands link Co ions to form a one-dimensional chain along the c axis. In the crystal structure, O–H⋯O hydrogen bonds link the title molecules into a two-dimensional network.


Corresponding author: Xinyan Ding, School of Chemistry and Chemical Engineering, Yulin University, 719000, Yulin, Shannxi, People’s Republic of China, E-mail:

Funding source: Department of Education of Shaanxi Province of China

Award Identifier / Grant number: 22JK0637

Funding source: Yulin Association for Science and Technology Youth Talent Lift Program of China

Award Identifier / Grant number: 20210343

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financial supported by the Department of Education of Shaanxi Province of China (22JK0637), Yulin Association for Science and Technology Youth Talent Lift Program of China (20210343).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Shi, Z.-Q., Ji, N.-N., Lan, L.-L., Zhang, T., Hu, H.-L., Li, G. Recent progress of metal-organic coordination polymers built by aromatic fused-thiophen functionalized ligands. Coord. Chem. Rev. 2023, 493, 215300; https://doi.org/10.1016/j.ccr.2023.215300.Search in Google Scholar

4. Li, X., Chen, K., Guo, R., Wei, Z. Ionic liquids functionalized MOFs for adsorption. Chem. Rev. 2023, 123, 10432–10467; https://doi.org/10.1021/acs.chemrev.3c00248.Search in Google Scholar PubMed

5. Dutta, A., Pan, Y., Liu, J.-Q., Kumar, A. Multicomponent isoreticular metal-organic frameworks: principles, current status and challenges. Coord. Chem. Rev. 2021, 445, 214074; https://doi.org/10.1016/j.ccr.2021.214074.Search in Google Scholar

6. Li, X., Yang, X., Xue, H., Pang, H., Xu, Q. Metal-organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027; https://doi.org/10.1016/j.enchem.2020.100027.Search in Google Scholar

7. Nandi, S., Mansouri, A., Dovgaliuk, I., Boullay, P., Patriarche, G., Cornu, L., Florian, P., Mouchaham, G., Serre, C. A robust ultra-microporous cationic aluminium-based metal-organic framework with a flexible tetra-carboxylate linker. Commun. Chem. 2023, 6, 144; https://doi.org/10.1038/s42004-023-00938-x.Search in Google Scholar PubMed PubMed Central

8. Zhang, Y.-R., Xie, X.-Z., Yin, X.-B., Xia, Y. Flexible ligand–Gd dye-encapsulated dual-emission metal-organic framework. Dalton Trans. 2022, 51, 17895–17901; https://doi.org/10.1039/d2dt03043h.Search in Google Scholar PubMed

9. Chen, X.-L., Cui, H.-L., Yang, H., Wang, X., Liu, L., Ren, Y.-X., Wang, J.-J. Rational design, crystal structures and sensing properties of a series of luminescent MOFs based on a flexible tetracarboxylate ligand and N-donor ligands. CrystEngComm 2019, 21, 7389–7406; https://doi.org/10.1039/c9ce01186b.Search in Google Scholar

10. Ghosh, S., Pahari, G., Maiti, A., Dinda, S., Ghoshal, D. Designing of three mixed ligand MOFs in searching of length induced flexibility in ligand for the creation of interpenetration. Polyhedron 2022, 218, 115763; https://doi.org/10.1016/j.poly.2022.115763.Search in Google Scholar

11. Xu, C., Luo, R., Fan, C., Xie, C., Zhang, X., Zhang, D., Fan, Y. Solvothermal synthesis of two novel Co(II)-based coordination polymers for the efficient UV-light-driven degradation of methyl violet and magnetic properties. Opt. Mater. 2023, 136, 113459; https://doi.org/10.1016/j.optmat.2023.113459.Search in Google Scholar

12. Yang, M.-X., Yan, R.-Z., Chen, L.-J., Lin, S. Five 3D Co(ii)–MOFs constructed from 5-(2-methylimidazol-1-yl) isophthalic acid and different bis(imidazole) ligands and one of their derivatives as an efficient electrocatalyst for ORR. Dalton Trans. 2022, 51, 17481–17487; https://doi.org/10.1039/d2dt02383k.Search in Google Scholar PubMed

13. Fan, C., Zhang, X., Guo, F., Xing, Z., Wang, J., Lin, W., Tan, J., Huang, G., Zong, Z. Design of five two-dimensional Co-metal-organic frameworks for oxygen evolution reaction and dye degradation properties. Front. Chem. 2022, 10, 1044313; https://doi.org/10.3389/fchem.2022.1044313.Search in Google Scholar PubMed PubMed Central

14. Wang, C., Wang, J., Wang, X., Zhang, X., Meng, Y., Chen, F., Lin, L., Meng, X. Rational design of three Co(II) coordination polymers based on a semirigid tricarboxylate ligand: syntheses, structural variability, electrochemical behavior, magnetic and photocatalytic properties. J. Mol. Struct. 2022, 1265, 133439; https://doi.org/10.1016/j.molstruc.2022.133439.Search in Google Scholar

15. Chen, X.-J., Wang, H.-J., Shan, W. Two mixed-ligand transition metal coordination polymers: crystal structures and prevention effect on chronic obstructive pulmonary disease. Inorg. Nano–Met. Chem. 2022, 52, 803–808; https://doi.org/10.1080/24701556.2021.1952259.Search in Google Scholar

16. Liu, W., Li, N., Zhang, X., Zhao, Y., Zong, Z., Wu, R., Tong, J., Bi, C., Shao, F., Fan, Y. Four Zn(II)–MOFs as highly sensitive chemical sensor for the rapid detection of tetracycline, o-nitro phenol, Cr2O2-7/PO3-4, Fe3+/Al3+ in water environment. Cryst. Growth Des. 2021, 21, 5558–5572; https://doi.org/10.1021/acs.cgd.1c00359.Search in Google Scholar

17. Qi, X., Chang, T., Zhu, Z., Hao, Y., Liu, Y., Hou, J. Post-synthetic modification of Isomorphic coordination polymers with metal ion exchange and catalytic cycloaddition of CO2. J. Solid State Chem. 2021, 304, 122604; https://doi.org/10.1016/j.jssc.2021.122604.Search in Google Scholar

18. Wu, R., Bi, C., Wang, L., Wang, J., Fan, C., Li, N., Wang, M., Shao, F., Chen, G., Fan, Y. Five functional Cd/Zn-based MOFs constructed from V-shaped tricarboxylate ligand for rapidly selective adsorption and efficiently photocatalytic degradation of hazardous aromatic dyes. Synth. Met. 2021, 277, 116786; https://doi.org/10.1016/j.synthmet.2021.116786.Search in Google Scholar

19. Xu, B.-T., Mao, Z.-J., He, L.-X., Guo, S.-C., Zhang, G.-D. Crystal structure of poly[(μ2-1,1′-(oxybis(4,1-phenylene) bis(1H-imidazole)-κ2N,N′)(μ2-1,3-benzenecarboxylato-κ3O,O′:O″)zinc(II)] dihydrate, C26H22N4O7Zn. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 973–974; https://doi.org/10.1515/ncrs-2019-0191.Search in Google Scholar

20. Wang, L., Wang, J., Fan, C., Bi, C., Zhang, X., Zhang, D., Wang, M., Fan, Y. Two novel Co (II)-coordination polymers as bifunctional materials for efficient photocatalytic degradation of dyes and electrocatalytic water oxidation. Appl. Organomet. Chem. 2020, 34, e5767; https://doi.org/10.1002/aoc.5767.Search in Google Scholar

Received: 2023-10-28
Accepted: 2024-01-19
Published Online: 2024-02-06
Published in Print: 2024-04-25

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Solvothermal synthesis and crystal structure of aqua-tris(p-acetamidobenzoate-κ2O,O′)-(2,2′-bipyridine-κ2N,N′)terbium(III) - water - methanol (1/1/1)
  4. Crystal structure of hexaaquazinc(II) catena-poly[bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O,O′)-bis(μ2-1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O:O′)trizinc(II)] hexahydrate C26H36N4O20Zn2
  5. The crystal structure of valinyl-N-ium-4-(5-(thiophen-2-yl)isoxazol-3-yl)phenyl trifluoroacetate
  6. Crystal structure of bis(3,5-diisopropyl-1H-pyrazol-4-ammonium) tetrafluoroterephthalate, 2[C9H18N3][C8F4O4]
  7. Crystal structure of aqua-octakis(μ3-salicylato)-(1,10-phenanthroline)-(acetonitrile)-dicobalt(II)-trititanium(IV), C70H45N3O25Co2Ti3
  8. Crystal structure of catena-poly[aqua-(μ2-4,4′-diimidazole diphenyl ether-κ2N:N′)-(sulfato-κ1O)-cobalt(II)] – dimethylformamide (2/1), C39H37CoN9O8S
  9. Crystal structure of (5R,8R,9R,10R,12R, 13R,14R,17S)-2-(E-3-fluorobenzylidene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a]phenanthren-3-one, C37H53FO3
  10. Crystal structure of (Z)-4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenyl diphenylphosphinate, C30H25O7P
  11. Crystal structure of 3-((5-methylpyridin-2-yl)amino)-1-phenylpropan-1-one, C15H16N2O
  12. The crystal structure of (R)-9-(5-methoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ylidene)-9H-thioxanthene, C28H22OS
  13. Crystal structure of diaqua-bis[1-(1-(hydroxymethyl)-1H-pyrazol-3-yl)-5-methyl-1H-1,2,3-triazole-4-carboxylato-κ2N,O)] manganese(II), C16H20MnN10O8
  14. The crystal structure of t-butyl 7-[4-(4-fluorophenyl)-2-[(methanesulfonyl)(methyl)amino]-6-(propan-2-yl)pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoate, C26H36FN3O6S
  15. The crystal structure of samarium sulfate pentahydrate, Sm2(SO4)3(H2O)5
  16. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ 4 N,O,O,O)-zinc(II)] monohydrate, C12H15NO9Zn
  17. The crystal structure of 2,3-difluoro-11H-benzo-[4,5]imidazo[2,1-a]isoindol-11-one, C14H6F2N2O
  18. The crystal structure of 2,3-di(9H-carbazol-9-yl)-9H-fluoren-9-one, C37H22N2O
  19. The crystal structure of 5-(2-chloro-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-10,11-dihydro-5H-dibenzo[b,f]azepine, C40H39ClN2
  20. Crystal structure of 2-bromo-1-hydroxy-3-(3-methylbut-2-enyloxy)-9H-xanthen-9-one, C18H15BrO4
  21. Crystal structure of bis(μ2-benzenesulfonato-κ2O:O′)-bis(μ2-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))-bis(2-methoxyphenolato-κ6O,O′:O′,N,N′,O′′:O′′,O′′′))disodium(I)dicopper(II)
  22. The crystal structure of (E)-1,2-bis(benzo[e][1,2]azaborinin-2(1H)-yl)ethene, C18H16B2N2
  23. Crystal structure of 3-oxo-urs-12-en-28-benzyl ester, C37H52O3
  24. The crystal structure of ethyl (E)-1-chloro-3-(4-chloro-1-methyl-1H-indole-2-carbonyl)-4-oxo-2-phenylcyclooct-2-ene-1-carboxylate, C27H25Cl2NO4
  25. The crystal structure of 4,4′-((5-bromo-2-iodo-1,3-phenylene)bis(oxy))bis(tert-butylbenzene) ─ ethanol (2/1), C26H28BrIO2
  26. Crystal structure of (E)-1-(4-(benzyloxy)-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C18H19NO3
  27. The crystal structure of N1,N3-bis(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)\ propanediamide hydrate, C25H26N6O4, 2(H2O)
  28. The crystal structure of 2,5-bis[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]cyclohexa-2,5-diene-1,4-dione, C28H26N6O4
  29. Crystal structure of 3,4-bis[2-(hydroxymethyl)-pyrrolidin-1-yl] cyclobut-3-ene-1,2-dione hydrate, C14H22N2O5
  30. The crystal structure of 2-(3,4–dichlorobenzyl)-1H-benzimidazole, C14H10Cl2N2
  31. The crystal structure of 2-(2-((4,6-dimethoxypyrimidin-2-yl)oxy)phenyl)-4-(piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidine, C28H27N5O4
  32. The crystal structure of 6-(benzofuran-2-yl)-2-oxo-4,5-diphenyl-3,4-dihydro-2H-pyran-3-carbonitrile, C26H17NO3
  33. Crystal structure of N-(4-bromobenzyl)-3-(difluoromethyl)-1-methyl-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide, C18H15BrF2N4O
  34. The crystal structure of the host-guest complex: N-{5-[2-(2,6-dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl}-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide-diethyl ether (2/1)
  35. The crystal structure of (Z)-4-amino-N-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H17N3O2
  36. The crystal structure of diethyl 1,4-dihydro-2,6-dimethyl-4-(3-cyanophenyl)-3,5-pyridinedicarboxylate, C20H22N2O4
  37. Crystal structure of 3-(5-((4-(difluoromethoxy)phenyl) sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl) oxetane-3-carboxamide, C17H19F2N3O5S
  38. Crystal structure of 2-((2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)amino)-N-(2-(4-methylpiperazin-1-yl)ethyl)benzamide hydrate, C25H37Cl2N5O6
  39. Crystal structure of 3-(benzo[d]thiazol-2-yl)-5-bromo-2-hydroxybenzaldehyde, C14H8BrNO2S
  40. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide, C11H10F2N4O
  41. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-isopropyl-1H-imidazol-3-ium hexafluoridophosphate(V), C20H34F12N4P2
  42. Crystal structure of ethyl 5,6-dichloro-2-methyl-2,3-dihydro-1 H-benzo[d]imidazole-2-carboxylate, C11H12Cl2N2O2
  43. The crystal of structure of (OC-6-22)-pentakis(acetonitrile)bromidoruthenium(II)bromide monohydrate, C10H15Br2N5Ru
  44. Crystal structure of (2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-(((4aS,5R,6S)-1-oxo-5-vinyl-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-6-yl)oxy)tetrahydro-2H-pyran-3-yl 2,3-dihydroxybenzoate hydrate, C23H26O12·H2O
  45. The crystal structure of (E)-4-amino-N′-(1-(4-fluorophenyl)propylidene)benzohydrazide, C16H16FN3O
  46. The crystal structure of 2′-(9H-carbazol-9-yl)-[1,1′-binaphthalen]-2-amine, C32H22N2
  47. Crystal structure of poly[μ3-diiodido-[μ2-di(1H-pyrazol-1-yl)methane-κ2N,N′)]dicopper(I)], C7H8Cu2I2N4
  48. Crystal structure of 3-amino-N′-hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  49. The crystal structure of 1,3-diacetyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione, C8H10O4N4
  50. Crystal structure of catena-poly[aqua-(μ2-1,4-diazabicyclo[2.2.2]octane-k2N: N′)-bis(sorbato-κ1O)-copper(II), C18H28CuN2O5
  51. Crystal structure of catena-poly[triaqua-(μ2 -1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ3O,O′:O′′)manganese(II)], C12H12N2O8Mn
  52. The crystal structure of [hexaaquamagnesium(II)] 4-[(pyridine-4-carbonyl)-amino]-phthalate trihydrate, C14H26N2O14Mg
  53. Crystal structure of 1-(p-tolylphenyl)-4-(2-furoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O3
  54. The crystal structure of bis(1,4,7,10,13-pentaoxacyclopentadecane)-potassium(I) dichloridocopper(I), C20H40Cl2CuKO10
  55. The crystal structure of tris(tetra-n-butylammonium) hexanitrato-κ2O,O′-lanthanium(III) C48H108N9O18La
Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0468/html
Scroll to top button