Startseite The crystal structure of 2,3-di(9H-carbazol-9-yl)-9H-fluoren-9-one, C37H22N2O
Artikel Open Access

The crystal structure of 2,3-di(9H-carbazol-9-yl)-9H-fluoren-9-one, C37H22N2O

  • Bangjin Sun ORCID logo und Zhenlong Tu EMAIL logo
Veröffentlicht/Copyright: 4. Januar 2024

Abstract

C37H22N2O, monoclinic, P2/n (no. 13), a = 8.9663(3) Å, b = 9.1812(3) Å, c = 30.8083(9) Å, β = 93.714(3)°, Z = 4, V = 2530.86(14) Å3, R gt(F) = 0.0445, wR ref(F 2) = 0.1192, T = 150 K.

CCDC no.: 2322350

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contain the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.15 × 0.12 × 0.10 mm
Wavelength: CuKα radiation (1.54184 Å)
μ: 0.63 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 74.0°, >99 %
N(hkl)measured, N(hkl)unique, R int: 9905, 4986, 0.039
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3982
N(param)refined: 361
Programs: Bruker [1], Olex2 [2], Shelx [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
O1 1.02951 (17) 0.52811 (16) 0.24738 (5) 0.0451 (4)
N1 0.65632 (16) 0.32558 (15) 0.36732 (5) 0.0258 (3)
N2 0.56823 (15) 0.59757 (15) 0.40313 (4) 0.0225 (3)
C1 0.51130 (19) 0.27029 (18) 0.36092 (5) 0.0245 (3)
C2 0.3913 (2) 0.32477 (19) 0.33515 (5) 0.0286 (4)
H2 0.399893 0.411425 0.318646 0.034*
C3 0.2584 (2) 0.2475 (2) 0.33450 (6) 0.0321 (4)
H3 0.173639 0.283081 0.317655 0.039*
C4 0.2461 (2) 0.1182 (2) 0.35811 (6) 0.0333 (4)
H4 0.153548 0.067583 0.357025 0.040*
C5 0.3669 (2) 0.06333 (19) 0.38292 (6) 0.0309 (4)
H5 0.358323 −0.024799 0.398725 0.037*
C6 0.50229 (19) 0.13976 (18) 0.38442 (5) 0.0252 (3)
C7 0.6477 (2) 0.11435 (18) 0.40589 (5) 0.0263 (4)
C8 0.7053 (2) 0.00699 (19) 0.43436 (6) 0.0309 (4)
H8 0.643498 −0.069954 0.443336 0.037*
C9 0.8540 (2) 0.0146 (2) 0.44928 (6) 0.0342 (4)
H9 0.894413 −0.057917 0.468638 0.041*
C10 0.9456 (2) 0.1275 (2) 0.43628 (6) 0.0340 (4)
H10 1.047918 0.128895 0.446430 0.041*
C11 0.8905 (2) 0.23787 (19) 0.40883 (6) 0.0298 (4)
H11 0.952608 0.315322 0.400378 0.036*
C12 0.74075 (19) 0.23022 (18) 0.39425 (5) 0.0250 (3)
C13 0.70628 (18) 0.46012 (18) 0.35058 (5) 0.0232 (3)
C14 0.80629 (19) 0.45846 (19) 0.31750 (6) 0.0279 (4)
H14 0.840770 0.368878 0.306403 0.034*
C15 0.85368 (18) 0.58925 (19) 0.30136 (5) 0.0252 (3)
C16 0.65867 (17) 0.59324 (18) 0.36672 (5) 0.0206 (3)
C17 0.70441 (18) 0.72516 (18) 0.34937 (5) 0.0220 (3)
H17 0.668566 0.815142 0.359803 0.026*
C18 0.80329 (17) 0.72205 (18) 0.31657 (5) 0.0210 (3)
C19 0.87574 (18) 0.84156 (19) 0.29338 (5) 0.0238 (3)
C20 0.9616 (2) 0.6177 (2) 0.26712 (6) 0.0293 (4)
C21 0.96905 (19) 0.77980 (19) 0.26369 (5) 0.0260 (4)
C22 1.0510 (2) 0.8647 (2) 0.23692 (6) 0.0321 (4)
H22 1.114640 0.821644 0.217042 0.038*
C23 1.0376 (2) 1.0150 (2) 0.23993 (6) 0.0344 (4)
H23 1.091364 1.076015 0.221543 0.041*
C24 0.9464 (2) 1.0764 (2) 0.26955 (6) 0.0355 (4)
H24 0.939505 1.179437 0.271264 0.043*
C25 0.8642 (2) 0.99113 (19) 0.29698 (6) 0.0290 (4)
H25 0.802608 1.034389 0.317373 0.035*
C26 0.42219 (18) 0.65095 (17) 0.40215 (5) 0.0239 (3)
C27 0.3186 (2) 0.66548 (19) 0.36691 (6) 0.0302 (4)
H27 0.343108 0.641435 0.338236 0.036*
C28 0.1778 (2) 0.7165 (2) 0.37531 (7) 0.0382 (4)
H28 0.104553 0.727686 0.351867 0.046*
C29 0.1411 (2) 0.7519 (2) 0.41739 (7) 0.0408 (5)
H29 0.043143 0.785207 0.422126 0.049*
C30 0.2454 (2) 0.7391 (2) 0.45223 (7) 0.0357 (4)
H30 0.220116 0.764018 0.480771 0.043*
C31 0.38859 (19) 0.68897 (18) 0.44478 (6) 0.0266 (4)
C32 0.5226 (2) 0.66515 (17) 0.47236 (5) 0.0253 (3)
C33 0.5605 (2) 0.6872 (2) 0.51655 (6) 0.0337 (4)
H33 0.487976 0.721648 0.535240 0.040*
C34 0.7039 (2) 0.6583 (2) 0.53267 (6) 0.0366 (4)
H34 0.730146 0.672477 0.562745 0.044*
C35 0.8119 (2) 0.6083 (2) 0.50544 (6) 0.0346 (4)
H35 0.910815 0.590812 0.517256 0.041*
C36 0.7773 (2) 0.58380 (19) 0.46150 (5) 0.0278 (4)
H36 0.850261 0.549206 0.442986 0.033*
C37 0.63189 (19) 0.61189 (17) 0.44574 (5) 0.0224 (3)

1 Source of materials

A mixture of 2,3-difluoro-9H-fluoren-9-one (216 mg, 1 mmol), 9H-carbazole (367 mg, 2.2 mmol) and potassium carbonate (414 mg, 3 mmol) in 50 mL hydrofuran under nitrogen was refluxed for 12 h. After cooling down to room temperature, the product was extracted with dichloromethane and washed with water. The combined organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane/petroleum to afford a yellow solid. Crystals were obtained by slow evaporation within 5 days.

2 Experimental details

Hydrogen atoms were included using riding models implemented in the Shelxl software [3, 4]. Using Olex2 [2], the structure was solved with the ShelXS [3] structure solution program and refined with the ShelXL [4] package.

3 Comment

Thermally activated delayed fluorescence (TADF) materials offer a promising avenue for future commercial organic light-emitting diode (OLED) applications as they efficiently harness both singlet (S1) and triplet (T1) excitons without relying on noble metals [5]. A general strategy in designing TADF molecules involve connecting the donor (D) and acceptor (A) components by σ bond. This arrangement ensures a wide separation of electron distribution and enables the realization of emission at various wavelengths by modulating the intensity of D–A pairs [6].

Herein, a TADF molecule with 9H-fluoren-9-one for yellow OLEDs, namely DCM, is reported. In the molecular structure, the bond length of O1–C20 is 1.210(2) Å, which belongs to the typical C=O double bonds. The C–N bond lengths of the aromatic rings were between 1.395(2) and 1.403(2) Å, while the one that connects the two rings were slightly longer, at 1.422(2) and 1.4265(18) Å, respectively. The angles of C12–N1–C1 and O1–C20–C15 were measured at 108.65(14)° and 127.14(17)° respectively. Other bond lengths and bond angles are all in the normal ranges [7, 8]. The groups O1–C20–C21–C22 and O1–C20–C21–C19 exhibit torsion angles with the value of 1.7(3)° and −178.1(2)°, respectively, which indicate that the 9H-fluoren-9-one rings are almost coplanar. It can be observed that there is a significant angle between the donor (carbazole) and acceptor (9H-fluoren-9-one) with the torsion angles of 70.4(2)°. The twisted configuration of the carbazoles and acceptor skeleton allows for efficient separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), leading to an effective reverse intersystem crossing (RISC) process.


Corresponding author: Zhenlong Tu, Shenzhen Institute of Information Technology, 518172 Longxiang Avenue No. 2188, Longgang District, Shenzhen, P.R. China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by the China Postdoctoral Science Foundation (2022M710020), the Science and Technology Project of Shenzhen City (JSGG20210802154213040).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Saint, Apex2 and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Ma, W., Bin, Z. Y., Yang, G., Liu, J. J., You, J. S. Structurally nontraditional bipolar hosts for RGB phosphorescent OLEDs: boosted by a Butterfly-shaped medium ring acceptor. Angew. Chem. Int. Ed. 2022, 61, e202116681; https://doi.org/10.1002/anie.202116681.Suche in Google Scholar PubMed

6. Sun, B. J., Tong, K. N., Chen, X., He, J. L., Liu, H., Fung, M. K., Fan, J. A universal thermally activated delayed fluorescence host with short triplet lifetime for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off. J. Mater. Chem. C 2021, 9, 7706–7712; https://doi.org/10.1039/d1tc01394g.Suche in Google Scholar

7. Li, Y. L., Wang, X. Z. Crystal structure of 10-(9H-carbazol-9-yl)-5H-dibenzo[a,d] [7]annelen-5-one, C27H17NO. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 111–112; https://doi.org/10.1515/ncrs-2022-0495.Suche in Google Scholar

8. Sreenivas, D. K., Nagarajan, R. Highly regioselective synthesis of indenocarbazolones via palladium-catalyzed intramolecular ortho arylation. Synlett 2012, 23, 1007–1012; https://doi.org/10.1055/s-0031-1290660.Suche in Google Scholar

Received: 2023-11-07
Accepted: 2023-12-28
Published Online: 2024-01-04
Published in Print: 2024-04-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Solvothermal synthesis and crystal structure of aqua-tris(p-acetamidobenzoate-κ2O,O′)-(2,2′-bipyridine-κ2N,N′)terbium(III) - water - methanol (1/1/1)
  4. Crystal structure of hexaaquazinc(II) catena-poly[bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O,O′)-bis(μ2-1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O:O′)trizinc(II)] hexahydrate C26H36N4O20Zn2
  5. The crystal structure of valinyl-N-ium-4-(5-(thiophen-2-yl)isoxazol-3-yl)phenyl trifluoroacetate
  6. Crystal structure of bis(3,5-diisopropyl-1H-pyrazol-4-ammonium) tetrafluoroterephthalate, 2[C9H18N3][C8F4O4]
  7. Crystal structure of aqua-octakis(μ3-salicylato)-(1,10-phenanthroline)-(acetonitrile)-dicobalt(II)-trititanium(IV), C70H45N3O25Co2Ti3
  8. Crystal structure of catena-poly[aqua-(μ2-4,4′-diimidazole diphenyl ether-κ2N:N′)-(sulfato-κ1O)-cobalt(II)] – dimethylformamide (2/1), C39H37CoN9O8S
  9. Crystal structure of (5R,8R,9R,10R,12R, 13R,14R,17S)-2-(E-3-fluorobenzylidene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a]phenanthren-3-one, C37H53FO3
  10. Crystal structure of (Z)-4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenyl diphenylphosphinate, C30H25O7P
  11. Crystal structure of 3-((5-methylpyridin-2-yl)amino)-1-phenylpropan-1-one, C15H16N2O
  12. The crystal structure of (R)-9-(5-methoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ylidene)-9H-thioxanthene, C28H22OS
  13. Crystal structure of diaqua-bis[1-(1-(hydroxymethyl)-1H-pyrazol-3-yl)-5-methyl-1H-1,2,3-triazole-4-carboxylato-κ2N,O)] manganese(II), C16H20MnN10O8
  14. The crystal structure of t-butyl 7-[4-(4-fluorophenyl)-2-[(methanesulfonyl)(methyl)amino]-6-(propan-2-yl)pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoate, C26H36FN3O6S
  15. The crystal structure of samarium sulfate pentahydrate, Sm2(SO4)3(H2O)5
  16. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ 4 N,O,O,O)-zinc(II)] monohydrate, C12H15NO9Zn
  17. The crystal structure of 2,3-difluoro-11H-benzo-[4,5]imidazo[2,1-a]isoindol-11-one, C14H6F2N2O
  18. The crystal structure of 2,3-di(9H-carbazol-9-yl)-9H-fluoren-9-one, C37H22N2O
  19. The crystal structure of 5-(2-chloro-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-10,11-dihydro-5H-dibenzo[b,f]azepine, C40H39ClN2
  20. Crystal structure of 2-bromo-1-hydroxy-3-(3-methylbut-2-enyloxy)-9H-xanthen-9-one, C18H15BrO4
  21. Crystal structure of bis(μ2-benzenesulfonato-κ2O:O′)-bis(μ2-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))-bis(2-methoxyphenolato-κ6O,O′:O′,N,N′,O′′:O′′,O′′′))disodium(I)dicopper(II)
  22. The crystal structure of (E)-1,2-bis(benzo[e][1,2]azaborinin-2(1H)-yl)ethene, C18H16B2N2
  23. Crystal structure of 3-oxo-urs-12-en-28-benzyl ester, C37H52O3
  24. The crystal structure of ethyl (E)-1-chloro-3-(4-chloro-1-methyl-1H-indole-2-carbonyl)-4-oxo-2-phenylcyclooct-2-ene-1-carboxylate, C27H25Cl2NO4
  25. The crystal structure of 4,4′-((5-bromo-2-iodo-1,3-phenylene)bis(oxy))bis(tert-butylbenzene) ─ ethanol (2/1), C26H28BrIO2
  26. Crystal structure of (E)-1-(4-(benzyloxy)-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C18H19NO3
  27. The crystal structure of N1,N3-bis(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)\ propanediamide hydrate, C25H26N6O4, 2(H2O)
  28. The crystal structure of 2,5-bis[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]cyclohexa-2,5-diene-1,4-dione, C28H26N6O4
  29. Crystal structure of 3,4-bis[2-(hydroxymethyl)-pyrrolidin-1-yl] cyclobut-3-ene-1,2-dione hydrate, C14H22N2O5
  30. The crystal structure of 2-(3,4–dichlorobenzyl)-1H-benzimidazole, C14H10Cl2N2
  31. The crystal structure of 2-(2-((4,6-dimethoxypyrimidin-2-yl)oxy)phenyl)-4-(piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidine, C28H27N5O4
  32. The crystal structure of 6-(benzofuran-2-yl)-2-oxo-4,5-diphenyl-3,4-dihydro-2H-pyran-3-carbonitrile, C26H17NO3
  33. Crystal structure of N-(4-bromobenzyl)-3-(difluoromethyl)-1-methyl-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide, C18H15BrF2N4O
  34. The crystal structure of the host-guest complex: N-{5-[2-(2,6-dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl}-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide-diethyl ether (2/1)
  35. The crystal structure of (Z)-4-amino-N-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H17N3O2
  36. The crystal structure of diethyl 1,4-dihydro-2,6-dimethyl-4-(3-cyanophenyl)-3,5-pyridinedicarboxylate, C20H22N2O4
  37. Crystal structure of 3-(5-((4-(difluoromethoxy)phenyl) sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl) oxetane-3-carboxamide, C17H19F2N3O5S
  38. Crystal structure of 2-((2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)amino)-N-(2-(4-methylpiperazin-1-yl)ethyl)benzamide hydrate, C25H37Cl2N5O6
  39. Crystal structure of 3-(benzo[d]thiazol-2-yl)-5-bromo-2-hydroxybenzaldehyde, C14H8BrNO2S
  40. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide, C11H10F2N4O
  41. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-isopropyl-1H-imidazol-3-ium hexafluoridophosphate(V), C20H34F12N4P2
  42. Crystal structure of ethyl 5,6-dichloro-2-methyl-2,3-dihydro-1 H-benzo[d]imidazole-2-carboxylate, C11H12Cl2N2O2
  43. The crystal of structure of (OC-6-22)-pentakis(acetonitrile)bromidoruthenium(II)bromide monohydrate, C10H15Br2N5Ru
  44. Crystal structure of (2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-(((4aS,5R,6S)-1-oxo-5-vinyl-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-6-yl)oxy)tetrahydro-2H-pyran-3-yl 2,3-dihydroxybenzoate hydrate, C23H26O12·H2O
  45. The crystal structure of (E)-4-amino-N′-(1-(4-fluorophenyl)propylidene)benzohydrazide, C16H16FN3O
  46. The crystal structure of 2′-(9H-carbazol-9-yl)-[1,1′-binaphthalen]-2-amine, C32H22N2
  47. Crystal structure of poly[μ3-diiodido-[μ2-di(1H-pyrazol-1-yl)methane-κ2N,N′)]dicopper(I)], C7H8Cu2I2N4
  48. Crystal structure of 3-amino-N′-hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  49. The crystal structure of 1,3-diacetyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione, C8H10O4N4
  50. Crystal structure of catena-poly[aqua-(μ2-1,4-diazabicyclo[2.2.2]octane-k2N: N′)-bis(sorbato-κ1O)-copper(II), C18H28CuN2O5
  51. Crystal structure of catena-poly[triaqua-(μ2 -1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ3O,O′:O′′)manganese(II)], C12H12N2O8Mn
  52. The crystal structure of [hexaaquamagnesium(II)] 4-[(pyridine-4-carbonyl)-amino]-phthalate trihydrate, C14H26N2O14Mg
  53. Crystal structure of 1-(p-tolylphenyl)-4-(2-furoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O3
  54. The crystal structure of bis(1,4,7,10,13-pentaoxacyclopentadecane)-potassium(I) dichloridocopper(I), C20H40Cl2CuKO10
  55. The crystal structure of tris(tetra-n-butylammonium) hexanitrato-κ2O,O′-lanthanium(III) C48H108N9O18La
Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0487/html
Button zum nach oben scrollen