Home The crystal structure of bis(1,4,7,10,13-pentaoxacyclopentadecane)-potassium(I) dichloridocopper(I), C20H40Cl2CuKO10
Article Open Access

The crystal structure of bis(1,4,7,10,13-pentaoxacyclopentadecane)-potassium(I) dichloridocopper(I), C20H40Cl2CuKO10

  • Ji Qi , En-Ying Bai and Chun-Ting Zhang ORCID logo EMAIL logo
Published/Copyright: February 21, 2024

Abstract

C20H40Cl2CuKO10, triclinic, P 1 (no. 2), a = 9.0148(5) Å, b = 9.3066(5) Å, c = 17.7296(10) Å, α =  78.383 ( 2 ) ° , β =  88.488 ( 2 ) ° , γ =  72.982 ( 2 ) ° , V = 1392.35(13) Å3, Z = 2, R gt (F) = 0.0781, wR ref (F2) = 0.2089, T = 170(2) K.

CCDC no.: 2331011

The crystal structure is shown in the figure ( i  = 1 − x, 1 − y, −z; ii  = 1 − x, 1 − y, 1 − z). Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red block
Size: 0.16 × 0.11 × 0.09 mm
Wavelength: Ga Kα radiation (1.34139 Å)
μ: 6.58 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 60.8°, 98 %
N(hkl)measuredN(hkl)uniqueRint: 15,749, 6311, 0.069
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 5259
N(param)refined: 310
Programs: Bruker [1], Olex2 [2], SHELX [3, 4], WinGX/ORTEP [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.3054 (7) 0.1754 (6) 0.0035 (3) 0.0648 (13)
H1A 0.198526 0.228572 0.016447 0.078*
H1B 0.317018 0.064178 0.011876 0.078*
C2 0.3330 (6) 0.2338 (5) −0.0772 (3) 0.0561 (11)
H2A 0.441991 0.184102 −0.088507 0.067*
H2B 0.264876 0.205937 −0.111027 0.067*
C3 0.1463 (4) 0.4850 (5) −0.1089 (2) 0.0443 (9)
H3A 0.079889 0.444237 −0.070168 0.053*
H3B 0.111053 0.480960 −0.160629 0.053*
C4 0.1348 (4) 0.6469 (5) −0.10457 (19) 0.0397 (8)
H4A 0.212891 0.682402 −0.137319 0.048*
H4B 0.030313 0.715553 −0.122803 0.048*
C5 0.1470 (3) 0.8007 (3) −0.0132 (2) 0.0396 (8)
H5A 0.042639 0.870648 −0.030696 0.048*
H5B 0.225939 0.842770 −0.041703 0.048*
C6 0.1707 (4) 0.7836 (4) 0.0716 (2) 0.0379 (8)
H6A 0.148896 0.886248 0.084565 0.045*
H6B 0.097452 0.732255 0.099500 0.045*
C7 0.3450 (5) 0.6312 (5) 0.1761 (2) 0.0434 (9)
H7A 0.265096 0.696210 0.204203 0.052*
H7B 0.448111 0.630394 0.194425 0.052*
C8 0.3324 (4) 0.4705 (5) 0.1938 (2) 0.0447 (9)
H8A 0.333225 0.433359 0.250241 0.054*
H8B 0.234102 0.467960 0.171238 0.054*
C9 0.4744 (5) 0.2145 (4) 0.1799 (2) 0.0406 (8)
H9A 0.448041 0.186747 0.234364 0.049*
H9B 0.583472 0.155189 0.174310 0.049*
C10 0.3716 (5) 0.1702 (5) 0.1301 (2) 0.0470 (9)
H10A 0.381386 0.059570 0.146351 0.056*
H10B 0.261949 0.229185 0.134584 0.056*
K1 0.500000 0.500000 0.000000 0.0281 (2)
O1 0.4172 (4) 0.2025 (3) 0.05237 (15) 0.0512 (7)
O2 0.3045 (3) 0.3954 (3) −0.09417 (16) 0.0432 (6)
O3 0.1622 (3) 0.6488 (3) −0.02594 (13) 0.0356 (5)
O4 0.3251 (3) 0.6960 (3) 0.09550 (14) 0.0359 (5)
O5 0.4615 (3) 0.3753 (3) 0.16156 (14) 0.0372 (5)
C11 0.6631 (4) 0.2665 (4) 0.3550 (2) 0.0358 (7)
H11A 0.553915 0.279645 0.340501 0.043*
H11B 0.728941 0.174380 0.337638 0.043*
C12 0.7087 (4) 0.4042 (4) 0.3148 (2) 0.0381 (8)
H12A 0.817658 0.392506 0.329132 0.046*
H12B 0.700384 0.414357 0.258338 0.046*
C13 0.6596 (4) 0.6685 (4) 0.30820 (19) 0.0363 (7)
H13A 0.658096 0.688652 0.251185 0.044*
H13B 0.767345 0.649741 0.327058 0.044*
C14 0.5538 (4) 0.8045 (4) 0.3352 (2) 0.0378 (8)
H14A 0.585947 0.896708 0.312859 0.045*
H14B 0.446673 0.821811 0.315970 0.045*
C15 0.6840 (4) 0.8191 (4) 0.4476 (2) 0.0391 (8)
H15A 0.684910 0.924572 0.423644 0.047*
H15B 0.782418 0.746420 0.436145 0.047*
C16 0.6683 (4) 0.8039 (4) 0.5334 (2) 0.0366 (7)
H16A 0.748310 0.840198 0.554393 0.044*
H16B 0.565181 0.869732 0.544160 0.044*
C17 0.8420 (4) 0.5627 (4) 0.5943 (2) 0.0360 (7)
H17A 0.872711 0.590909 0.641180 0.043*
H17B 0.912871 0.584768 0.552882 0.043*
C18 0.8521 (2) 0.3963 (4) 0.61011 (17) 0.0333 (7)
H18A 0.954676 0.333981 0.634174 0.040*
H18B 0.770658 0.376688 0.645783 0.040*
C19 0.8478 (2) 0.1946 (3) 0.54674 (19) 0.0322 (7)
H19A 0.766248 0.166195 0.579652 0.039*
H19B 0.950620 0.132300 0.570533 0.039*
C20 0.8321 (4) 0.1681 (4) 0.4669 (2) 0.0342 (7)
H20A 0.906638 0.207558 0.433166 0.041*
H20B 0.856526 0.056641 0.468451 0.041*
K2 0.500000 0.500000 0.500000 0.0254 (2)
O6 0.6791 (2) 0.2435 (3) 0.43673 (13) 0.0309 (5)
O7 0.6084 (3) 0.5374 (3) 0.33698 (13) 0.0339 (5)
O8 0.5546 (3) 0.7859 (3) 0.41744 (14) 0.0341 (5)
O9 0.6851 (2) 0.6492 (3) 0.57108 (14) 0.0320 (5)
O10 0.8312 (3) 0.3564 (2) 0.53834 (13) 0.0301 (5)
Cl1 0.88217 (12) 0.89596 (13) 0.21770 (6) 0.0514 (3)
Cl2 1.13330 (13) 1.15145 (13) 0.29374 (6) 0.0518 (3)
Cu1 1.00983 (6) 1.02144 (6) 0.25538 (3) 0.0387 (2)

1 Source of materials

All the reagents were purchased from commercial sources and used without further purification. With stirring, 67 mg CuCl2 (0.50 mmol) and 37 mg KCl (0.50 mmol) were dissolved into 4 mL of ethanol. The reactant was heated to 60 °C and we allowed the reaction to continue for 1 h. Then, the reaction mixture was cooled to room temperature. After filtration, the slow diffusion of 15-crown-5 into the filtrate over 15 days allowed the formation of light red block crystals.

2 Experimental details

Absorption corrections were used by using multi-scan program [1]. Using OLEX2 [2], the structure was solved with the ShelXT structure solution program and refined with the ShelXL [4] refinement package. H atoms were generated geometrically and refined as riding atoms with C–H = 0.99 Å and Uiso(H) = 1.2 times Ueq(C) for methylene H atoms. The figure was created using the ORTEP-3 software [5].

3 Comment

Owing to their electron-donating characteristics, members of the crown ether family exhibit interactions with diverse alkali metal cations [6]. The complexes formed between alkali metals and crown ethers got considerable attention in recent decades, not only for their distinctive architectural features and diverse chemistry but also for their potential applications [79]. Moreover, the synthesis of flexible molecules such as crown ethers within low-dimensional systems has emerged as an area of significant interest, given its capacity to provide insights into the influence of structural variations on the magnetic properties of these materials [10]. In this context, we employed 15-crown-5 as the ligand to facilitate the formation of the aforementioned complex and subsequently determined its crystal structure.

The title complex crystallizes as discrete units of the formula [K(15-crown-5)2][CuCl2], exhibiting no significant intermolecular contacts. The sandwich-like cations and anions of the complex are well separated in the crystalline lattice, as depicted in the accompanying figure. Within an asymmetric unit, there are two one-half [K(15-crown-5)2]+ cations and a solitary [CuCl2] anion. The local geometry surrounding the K1 atom, located on an inversion center, manifests as a ten-coordinated pentagonal antiprism. This geometric arrangement comprises five oxygen atoms (O1, O2, O3, O4, and O5) originating from one 15-crown-5 ligand and five oxygen atoms (O1 i , O2 i , O3 i , O4 i , and O5 i ) from the opposing 15-crown-5 ligand. Consequently, these two ligands adopt staggered conformations. The local geometry around the K2 atom mirrors that of K1, featuring a ten-coordinated pentagonal antiprism. The K–O bond distances range from 2.846(2) to 3.037(3) Å, consistent with previously reported values for [K(15-crown-5)2]+ cations [1113]. Within the [CuCl2] anion, the Cu1 atom is dicoordinated by two Cl atoms, forming a linear structure. The Cu–Cl bond distances measure 2.0678(11) and 2.0796(11) Å, aligning closely with established values for [CuCl2] anions [1416]. Generally bond lengths are in the expected ranges [17].


Corresponding author: Chun-Ting Zhang, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China, E-mail:

  1. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  2. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: None declared.

References

1. Bruker. Apex3 v. 2016.90 and SAINT v.8.37A; Bruker Axs Inc.: Madison, Wisconsin, USA, 2016.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

5. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

6. Steed, J. W. First- and second-sphere coordination chemistry of alkali metal crown ether complexes. Coord. Chem. Rev. 2001, 215, 171–221; https://doi.org/10.1016/s0010-8545(01)00317-4.Search in Google Scholar

7. Iannazzo, D., Espro, C., Ferlazzo, A., Celesti, C., Branca, C., Neri, G. Electrochemical and fluorescent properties of crown ether functionalized graphene quantum dots for potassium and sodium ions detection. Nanomaterials 2021, 11, 2897–2909; https://doi.org/10.3390/nano11112897.Search in Google Scholar PubMed PubMed Central

8. Cheng, Q., Liu, S., Wang, M., Zhang, L., He, Y., Ni, J., Zhang, J., Deng, C., Sun, Y., Qian, T., Yan, C. Li+-ion bound crown ether functionalization enables dual promotion of dynamics and thermodynamics for ambient ammonia synthesis. J. Energy Chem. 2023, 85, 191–197; https://doi.org/10.1016/j.jechem.2023.06.012.Search in Google Scholar

9. Huang, Y., Li, X., Chen, L., Luo, G., Tao, D., Sun, J., Qiu, Z., Chao, Y., Zhu, W. Synthesis of a magnetic crown ether ion imprinted polymer material for the selective adsorption of lithium. New J. Chem. 2023, 47, 3134–3139; https://doi.org/10.1039/d2nj05377b.Search in Google Scholar

10. Cai, L.-Z., Jiang, X.-M., Zhang, Z.-J., Guo, P.-Y., Jin, A.-P., Wang, M.-S., Guo, G.-C. Reversible single-crystal-to-single-crystal transformation and magnetic change of nonporous copper(II) complexes by the chemisorption/desorption of HCl and H2O. Inorg. Chem. 2017, 56, 1036–1040; https://doi.org/10.1021/acs.inorgchem.6b02671.Search in Google Scholar PubMed

11. Eichstaedt, N., van der Zwan, K., Mayr, L., Siegel, R., Senker, J., Breu, J. Crystal structure of phenanthrenide salts stabilized by 15-crown-5 and 18-crown-6. Z. Naturforsch. B 2022, 77, 197–201; https://doi.org/10.1515/znb-2021-0177.Search in Google Scholar

12. Elinburg, J. K., Hyre, A. S., McNeely, J., Alam, T. M., Klenner, S., Pöttgen, R., Rheingold, A. L., Doerrer, L. H. Formation of monomeric Sn(II) and Sn(IV) perfluoropinacolate complexes and their characterization by 119Sn Mössbauer and 119Sn NMR spectroscopies. Dalton Trans. 2020, 49, 13773–13785; https://doi.org/10.1039/d0dt02837a.Search in Google Scholar PubMed

13. Dilchert, K., Schmidt, M., Groβjohann, A., Feichtner, K.-S., Mulvey, R. E., Gessner, V. H. Solvation effects on the structure and stability of alkali metal carbenoids. Angew. Chem. Int. Ed. 2021, 60, 493–498; https://doi.org/10.1002/anie.202011278.Search in Google Scholar PubMed PubMed Central

14. Chekhlov, A. N. Preparation and crystal structure of bis(dibenzo-18-crown-6)-(tetrachlorocuprato(II)–Cl, Cl′, Cl″, Cl‴)dipotassium diaqua(dibenzo-18-crown-6)potassium dichlorocuprate(I)-dibenzo-18-crown-6. Russ. J. Gen. Chem. 2009, 79, 900–904; https://doi.org/10.1134/s1070363209050065.Search in Google Scholar

15. Pantcheva, I. N., Dorkov, P., Atanasov, V. N., Mitewa, M., Shivachev, B. L., Nikolova, R. P., Mayer-Figge, H., Sheldrick, W. S. Crystal structure and properties of the copper(II) complex of sodium monensin A. J. Inorg. Biochem. 2009, 103, 1419–1424; https://doi.org/10.1016/j.jinorgbio.2009.08.007.Search in Google Scholar PubMed

16. Chen, Z., Xie, Y., Li, Z., Lin, T. Dinuclear lanthanide compound as a promising luminescent probe for Al3+ ions. Molecules 2022, 27, 8761–8769; https://doi.org/10.3390/molecules27248761.Search in Google Scholar PubMed PubMed Central

17. Rath, N. P., Holt, E. M. Copper(I) iodide complexes of novel structure: [Cu4I6] [Cu8I13]K7(12-crown-4)6, [Cu4I6]K2(15-crown-5)2, and [Cu3I4]K(dibenzo-24-crown-8). J. Chem. Soc., Chem. Commun. 1985, 665–667; https://doi.org/10.1039/c39850000665.Search in Google Scholar

Received: 2024-01-02
Accepted: 2024-02-05
Published Online: 2024-02-21
Published in Print: 2024-04-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Solvothermal synthesis and crystal structure of aqua-tris(p-acetamidobenzoate-κ2O,O′)-(2,2′-bipyridine-κ2N,N′)terbium(III) - water - methanol (1/1/1)
  4. Crystal structure of hexaaquazinc(II) catena-poly[bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O,O′)-bis(μ2-1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O:O′)trizinc(II)] hexahydrate C26H36N4O20Zn2
  5. The crystal structure of valinyl-N-ium-4-(5-(thiophen-2-yl)isoxazol-3-yl)phenyl trifluoroacetate
  6. Crystal structure of bis(3,5-diisopropyl-1H-pyrazol-4-ammonium) tetrafluoroterephthalate, 2[C9H18N3][C8F4O4]
  7. Crystal structure of aqua-octakis(μ3-salicylato)-(1,10-phenanthroline)-(acetonitrile)-dicobalt(II)-trititanium(IV), C70H45N3O25Co2Ti3
  8. Crystal structure of catena-poly[aqua-(μ2-4,4′-diimidazole diphenyl ether-κ2N:N′)-(sulfato-κ1O)-cobalt(II)] – dimethylformamide (2/1), C39H37CoN9O8S
  9. Crystal structure of (5R,8R,9R,10R,12R, 13R,14R,17S)-2-(E-3-fluorobenzylidene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a]phenanthren-3-one, C37H53FO3
  10. Crystal structure of (Z)-4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenyl diphenylphosphinate, C30H25O7P
  11. Crystal structure of 3-((5-methylpyridin-2-yl)amino)-1-phenylpropan-1-one, C15H16N2O
  12. The crystal structure of (R)-9-(5-methoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ylidene)-9H-thioxanthene, C28H22OS
  13. Crystal structure of diaqua-bis[1-(1-(hydroxymethyl)-1H-pyrazol-3-yl)-5-methyl-1H-1,2,3-triazole-4-carboxylato-κ2N,O)] manganese(II), C16H20MnN10O8
  14. The crystal structure of t-butyl 7-[4-(4-fluorophenyl)-2-[(methanesulfonyl)(methyl)amino]-6-(propan-2-yl)pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoate, C26H36FN3O6S
  15. The crystal structure of samarium sulfate pentahydrate, Sm2(SO4)3(H2O)5
  16. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ 4 N,O,O,O)-zinc(II)] monohydrate, C12H15NO9Zn
  17. The crystal structure of 2,3-difluoro-11H-benzo-[4,5]imidazo[2,1-a]isoindol-11-one, C14H6F2N2O
  18. The crystal structure of 2,3-di(9H-carbazol-9-yl)-9H-fluoren-9-one, C37H22N2O
  19. The crystal structure of 5-(2-chloro-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-10,11-dihydro-5H-dibenzo[b,f]azepine, C40H39ClN2
  20. Crystal structure of 2-bromo-1-hydroxy-3-(3-methylbut-2-enyloxy)-9H-xanthen-9-one, C18H15BrO4
  21. Crystal structure of bis(μ2-benzenesulfonato-κ2O:O′)-bis(μ2-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))-bis(2-methoxyphenolato-κ6O,O′:O′,N,N′,O′′:O′′,O′′′))disodium(I)dicopper(II)
  22. The crystal structure of (E)-1,2-bis(benzo[e][1,2]azaborinin-2(1H)-yl)ethene, C18H16B2N2
  23. Crystal structure of 3-oxo-urs-12-en-28-benzyl ester, C37H52O3
  24. The crystal structure of ethyl (E)-1-chloro-3-(4-chloro-1-methyl-1H-indole-2-carbonyl)-4-oxo-2-phenylcyclooct-2-ene-1-carboxylate, C27H25Cl2NO4
  25. The crystal structure of 4,4′-((5-bromo-2-iodo-1,3-phenylene)bis(oxy))bis(tert-butylbenzene) ─ ethanol (2/1), C26H28BrIO2
  26. Crystal structure of (E)-1-(4-(benzyloxy)-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C18H19NO3
  27. The crystal structure of N1,N3-bis(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)\ propanediamide hydrate, C25H26N6O4, 2(H2O)
  28. The crystal structure of 2,5-bis[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]cyclohexa-2,5-diene-1,4-dione, C28H26N6O4
  29. Crystal structure of 3,4-bis[2-(hydroxymethyl)-pyrrolidin-1-yl] cyclobut-3-ene-1,2-dione hydrate, C14H22N2O5
  30. The crystal structure of 2-(3,4–dichlorobenzyl)-1H-benzimidazole, C14H10Cl2N2
  31. The crystal structure of 2-(2-((4,6-dimethoxypyrimidin-2-yl)oxy)phenyl)-4-(piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidine, C28H27N5O4
  32. The crystal structure of 6-(benzofuran-2-yl)-2-oxo-4,5-diphenyl-3,4-dihydro-2H-pyran-3-carbonitrile, C26H17NO3
  33. Crystal structure of N-(4-bromobenzyl)-3-(difluoromethyl)-1-methyl-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide, C18H15BrF2N4O
  34. The crystal structure of the host-guest complex: N-{5-[2-(2,6-dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl}-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide-diethyl ether (2/1)
  35. The crystal structure of (Z)-4-amino-N-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H17N3O2
  36. The crystal structure of diethyl 1,4-dihydro-2,6-dimethyl-4-(3-cyanophenyl)-3,5-pyridinedicarboxylate, C20H22N2O4
  37. Crystal structure of 3-(5-((4-(difluoromethoxy)phenyl) sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl) oxetane-3-carboxamide, C17H19F2N3O5S
  38. Crystal structure of 2-((2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)amino)-N-(2-(4-methylpiperazin-1-yl)ethyl)benzamide hydrate, C25H37Cl2N5O6
  39. Crystal structure of 3-(benzo[d]thiazol-2-yl)-5-bromo-2-hydroxybenzaldehyde, C14H8BrNO2S
  40. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide, C11H10F2N4O
  41. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-isopropyl-1H-imidazol-3-ium hexafluoridophosphate(V), C20H34F12N4P2
  42. Crystal structure of ethyl 5,6-dichloro-2-methyl-2,3-dihydro-1 H-benzo[d]imidazole-2-carboxylate, C11H12Cl2N2O2
  43. The crystal of structure of (OC-6-22)-pentakis(acetonitrile)bromidoruthenium(II)bromide monohydrate, C10H15Br2N5Ru
  44. Crystal structure of (2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-(((4aS,5R,6S)-1-oxo-5-vinyl-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-6-yl)oxy)tetrahydro-2H-pyran-3-yl 2,3-dihydroxybenzoate hydrate, C23H26O12·H2O
  45. The crystal structure of (E)-4-amino-N′-(1-(4-fluorophenyl)propylidene)benzohydrazide, C16H16FN3O
  46. The crystal structure of 2′-(9H-carbazol-9-yl)-[1,1′-binaphthalen]-2-amine, C32H22N2
  47. Crystal structure of poly[μ3-diiodido-[μ2-di(1H-pyrazol-1-yl)methane-κ2N,N′)]dicopper(I)], C7H8Cu2I2N4
  48. Crystal structure of 3-amino-N′-hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  49. The crystal structure of 1,3-diacetyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione, C8H10O4N4
  50. Crystal structure of catena-poly[aqua-(μ2-1,4-diazabicyclo[2.2.2]octane-k2N: N′)-bis(sorbato-κ1O)-copper(II), C18H28CuN2O5
  51. Crystal structure of catena-poly[triaqua-(μ2 -1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ3O,O′:O′′)manganese(II)], C12H12N2O8Mn
  52. The crystal structure of [hexaaquamagnesium(II)] 4-[(pyridine-4-carbonyl)-amino]-phthalate trihydrate, C14H26N2O14Mg
  53. Crystal structure of 1-(p-tolylphenyl)-4-(2-furoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O3
  54. The crystal structure of bis(1,4,7,10,13-pentaoxacyclopentadecane)-potassium(I) dichloridocopper(I), C20H40Cl2CuKO10
  55. The crystal structure of tris(tetra-n-butylammonium) hexanitrato-κ2O,O′-lanthanium(III) C48H108N9O18La
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0003/html
Scroll to top button