Home Probabilistic Approach to Determination of Dynamic Characteristics of Automatic Balancing Device
Article Open Access

Probabilistic Approach to Determination of Dynamic Characteristics of Automatic Balancing Device

  • Y. Tarasevych EMAIL logo , N. Sovenko , I. Savchenko and J. Skrzypacz
Published/Copyright: October 26, 2018
Become an author with De Gruyter Brill

1 Introduction

Pumps are the most common type of machine used in industry of any country. Modern pumps can have sufficiently wide range of operating parameters, namely rotation frequency of some turbo pumps can reach tens of thousands of revolutions per minute, the pressure of pumped liquids - up to hundreds of MPa. Different production requirements determine the variety of pump layouts and the design of their components. Automatic balancing device is one of such elements of high-pressure multi-stage pumps. It is used to unload the rotor from an unbalanced axial force acting on its impellers. Moreover, this element, in addition to its main unload function, performs an additional function of the end seal, reducing the fluid pressure at the pump outlet from the discharge pressure to the suction pressure.

The scheme of such typical balancing device is shown in Fig. 1. The force acting on the rotor is balanced by the hydrodynamic forces of the fluid pressure in the chamber 4 and in the throttle channel 3, which act on the rotating disk 5 (force F). The main elements of the such balancing device are successive cylindrical throttle 1 and face throttle 3. Face throttle resistance varies with the gap variation under possible axial displacements of the rotor which are caused by change in the axial force T acting on the rotor. The latter ultimately provides a regulatory mechanism. At the same time, value of the face gap basically determines the leakage, which can be from 5 to 10% of the pump feed [1, 2, 3].

Figure 1 Scheme of typical automatic balancing device of centrifugal pump
Figure 1

Scheme of typical automatic balancing device of centrifugal pump

Ensuring reliable and economical operation of automatic balancing device is associated with a number of difficulties. It is rather complicated and sometimes impossible to increase the hydraulic resistance of a cylindrical throttle in practice that is why it is trying to increase the resistance of the face throttle usually. However, considering the dependence of the hydraulic resistance on the value of the face gap (from 20 to 200 μm), the necessity of its reducing is associated with the danger of scuffing during the operation of the pump. Quite high pressure drops on the face throttle of automatic balancing device (up to 10 MPa) lead to deformation of the support disk 5. Moreover, these deformations lead to the appearance of a diffusive gap, which in turn reduces the hydrostatic axial force on the face throttle. In addition, the deformations of the rotating disk 5 significantly affect not only the static, but also the dynamic behavior of the device as a whole. The large diffuser angle in the face throttle significantly reduces the stiffness characteristics of the liquid layer, and consequently, when axial vibrations of automatic balancing device disk rigidly connected to the rotor the additional hydrodynamic forces are taken place, caused by liquid layer in the gab, can lead to face oscillations and to the loss of dynamic stability. Therefore, when designing such devices, it is necessary to pay special attention to the calculation of hydrodynamic characteristics of both cylindrical and face throttle taking into account the above factors [1, 2, 3, 4, 5, 6].

The field of application of automatic balancing device is rather narrow. Basically, these are multi-stage pumps for heat and nuclear power, as well as for the oil-producing and processing industries, which are not subject to modernization. Therefore, there are not so many papers devoted to theoretical research of this topic. Bases of static and dynamic characteristics calculation of automatic balancing devices were made in 1980’s [3, 4, 7]. Later, on the basis of these works the specified results allowed to create the improved constructions of such devices [1, 8, 9], but these constructions unfortunately did not get wide application in industry.

Flow rates through cylindrical and face throttles, as well as the forces and moments acting on the surface of the automatic balancing device from the pumped liquid, depend on the geometry of the gaps, the nature and velocities of movement of surfaces and fluid flow regimes [1]. Due to the manufacturing tolerances accepted in the pump construction, as well as the possible changes in the shape of the gaps during the operation, the values of the flow rates and forces calculated at the design stage may differ significantly from the actual ones. Well known and widely used analytical dependences to calculate the operational parameters of automatic balancing device are rather approximate and do not allow to take into account all the variety of factors affecting its operation. They are suitable for preliminary, engineering calculations and sometimes obtained results can be far from reality. Moreover, all calculated characteristics are usually obtained in the deterministic statement of the problem

Summary losses in the automatic balancing device can be more than 10% of pump efficiency. Modernization of the pump is usually associated with an improvement of working wheels and the flowing part geometry. This leads to increasing of pump efficiency by no more than 1–2%. At the same time, as it is shown in [2, 5], the influence of manufacturing tolerances and the changes in the shape of the gaps during the operation in cylindrical and face seals, which are random nature, can lead to deviations of the calculated characteristics to 10%.

So, the main purpose of this work is to show the influence of random parameters (local hydraulic resistances, taper of face throttle) on dynamic characteristics of the automatic balancing device: natural frequency (amplitude) of the axial oscillations.

2 Research Methodology

The basic calculation of the automatic balancing device includes static and dynamic stages [1, 3, 6]. The purpose of the static calculation is to select the basic geometric parameters that determine the minimum flow rate for a given range of variation in the axial force T. The dependence of the face gap value on the axial force can be found from the condition of axial equilibrium of the unloading disc 5:

(1)T=F+Fn,

where F = S2p20 + S2Δpb𝝍2 + Fm - resulting axial force of pressure, acting on disk 5, which consists of the pressure force p2 in chamber 4 and the pressure force in the face gap 3, Fn = kd (Δhm0), kd - the stiffness of the springs of the squeezing device, Δ- their preliminary compression, - value of the face gap. The pressure p2 in the discharge chamber 4 depends on the face gap value hm0 and can be obtained from the equation of the balance of the flow of the liquid through the cylindrical Q1and face Q2 throttles:

(2)Q1=Q2,g1p1p2=g2p2p3,

where g1 and g2 - conductivities of cylindrical and face throttles, which are determined by gap value of the corresponding throttle [3]. As it is shown in [2], due to the tolerances in the pumping design for the dimensions of the operating surfaces of the sealing pairs, the gap in the cylindrical throttle is a random variable, the range of changes of which can be ± (10 ...30)%. Therefore, the conductivity of a cylindrical throttle has a random nature and is a random process if take into account the possible variation of the gap in time.

Static calculation is discussed in details in [3, 6].

The dynamic behavior of automatic balancing device with sufficient accuracy for practice is described by the differential equation of motion of the disk relative to the static equilibrium position for which the corresponding steady-state values of pressures, face gap and flow rate are determined under static calculation [1, 6]:

(3)mdz¨d+cdz˙d+kdzd=S2p20+S2Δpbψ2+FmT+kdΔ,

where md - rotor mass, cd - damping coefficient of axial rotor oscillations, S2 - the surface area to which the pressure p20 in the unloading chamber 4 is applied (value of pressure p20 is obtained under static calculation).

Axial force of liquid pressure in face throttle can be determined by coefficients:

(4)Fm=Fm0Azz¯¨dBzz¯˙dCzz¯dBpψ˙2Cpψ2,

z¯d=zd/hm0dimensionless axial displacement of the disk, - dimensionless pressure in discharge chamber. The axial force of the fluid pressure in the face gap is caused by the pressure flow considering the local losses and the centrifugal flow (which determine the stiffness characteristics of the liquid layer), the shear flow caused by walls motion (damping characteristics) and the inertial flow (inertial characteristics), and is determined by the operating parameters (pressure and rotational frequency) and the geometry of the end throttle [6].

The equation of forced disk oscillations without considering the pressure changes in the balancing device chamber

(5)a11z¯¨d+b11z¯˙d+c11z¯d=F0eiωt,

where a11=mdhm0+Az,b11=cdhm0+Bz,c11=kdhm0+Cz0+χωω2

Wiω=z¯0eiωt+ϕ1F0eiωt=Aωeiϕ1ωAω=1a11ω2+c11+ib11ω - frequency system function; A/ω=z¯d0z¯ds=Aωk=kdhm0kdhm0+Cz011ν22+2ζν2 - dynamical coefficient; where z¯ds=F0/kdhm0 - static axial displacement under amplitude value of force F0, ν=ωω0,ω02=kdhm0+Cz0mdhm0+Az+χω;χω - coefficient determined mainly by the value of the centrifugal flow and characterizing the change of liquid layer stiffness in the face throttle caused by rotational frequency.

The equation of oscillations should be supplemented with the equation of the balance of flow rates, which determines the dependence of the pressure in the chamber 𝝍2 on the value of the face gap. The equation of the flow rates balance in contrast to the equations of statics takes into account the flow rate of displacement Q ν and compression Qp in the discharge chamber

(6)Q1=Q2+Qυ+Qp

where Qν = S2zd - changing the chamber volume and Qp = VEp˙2 - change in the volume of fluid in the chamber from the compression of the fluid under axial displacements of the rotor. In addition, the flow rate through the face throttle Q2 is determined not only by the pressure flow, but also depends on the oscillations of the face gap [3].

The value of flow rate both through the cylindrical and through the face throttle depends on the value of the resistances, as well as the shape of the gap. The geometry of the gap, which can be non-flat initially due to inaccurate manufacturing and possible distortions during installation, may also change during operation. In addition, to take into account the effect of resistances, appropriate coefficients are used, the values of which are determined empirically [4]. However, it should be noted that their actual values may differ significantly from the calculated ones because of the lack of requirements for the shape of the inlet cross-sections of the cylindrical and face throttles. Different shapes of the input sections are possible in different assemblies and variants of installation of the discharge disc of automatic balancing device (see Figure 1). In this case, the sealing surfaces can change its shape due to wear and force deformation during operation of the pump and this means that the coefficients of local losses are random variables by their nature.

So, corresponding loss factors and also the parameter characterizing the shape of the cross-section of face throttle will be considered as random values under calculating the dynamic characteristics of the automatic balancing device. At the moment there is no information on what distribution laws these random variables can have. So, on the basis of the central limit theorem of probability theory, as the first approximation in the solution of the probabilistic problem the normal distribution laws will be taken for the indicated random variables. And just as it was done in work [5] empirical values of the considered coefficients will be taken as mean values and the corresponding standard deviations will be given by the percentage deviation of the values of the considered random variable from its mean value determined by the definition physics problems [4]: ξim=1.5,ξom=0.2ξim. Here X=f(x)xdx - the mean value operator applied to the corresponding random variable.

To determine the effect of a random variation of these parameters on the inertia, damping and stiffness coefficients caused by action of hydrodynamic forces on the surface of automatic balancing device from the flow the joint probability density f1(ζim,ζom,ζ2m,β) take into considering. This joint probability density, according to the stochastic independence of the random variables, can be represented in the form

(7)f1(ζim,ζom,ζ2m,β)=f2(ζim)f3(ζom)f4(ζ2m)f5(β)

where f2(ζim),f3(ζom),f4(ζ2m) - the normal probability density of the coefficients of local hydraulic losses at the inlet ζimat the outlet ζomand along the length of face throttle ζ2m,f5(β) the probability density of the taper angle of the face throttle.

For practical use, it is sufficient to know the first two moment characteristics of the natural frequency of the axial oscillations of the automatic balancing device: mean value and the standard deviation. The problem of finding the probability density of the natural frequency is not presented in this paper.

From (5) natural frequency of axial disk oscillations

(8)ω0=c11a11=kdhm0+Cz0(ζim,ζom,ζ2m,β)mdhm0+Az(ζim,ζom,ζ2m,β)+χω(ζim,ζom,ζ2m,β)

Mean value of natural frequency can be obtained based on the formula

ω0=0βmaxζimminζimmaxζomminζommax2mmin2mmaxΨ(ζim,ζom,ζ2m,β)f1(ζim,ζom,ζ2m,β)dζ2mdζomdζimdβ

The standard deviation:

Dω0=0βmaxζimminζimmaxζomminζommax2mmin2mmax(Ψ(ζim,ζom,ζ2m,β)ω0)2f1(ζim,ζom,ζ2m,β)dζ2mdζomdζimdβ

According to the studies, the range of possible values of natural frequency increases with increasing the standard deviations of random values ζim, ζom, ζ2m, β(Table 1). Numerical calculation was made for the following values of basic parameters rm = 0.089 m, p1 = 35 · 106 Pa, hmo = 88 μm, md = 10 kg, kd = 103 kg·s−1, cd = 5 · 106 kg·s−2. According to calculation the deterministic value of natural frequency is ω0 = 2.99 · 103 c−1.

Table 1

Possible range of variable
Tolerance
ζimζomβω0 * 10−3
5%(1.275; 1.725)(0.255; 0.345)(0.095; 0.128)(2.8; 3.15)
10%(1.05; 1.95)(0.21; 0.39)(0.078; 0.145)(2.62; 3.32)
15%(0.825; 2.175)(0.165; 0.435)(0.061; 0.161)(2.42; 3.5)
20%(0.12; 0.48)(0.044; 0.178)(2.7; 3.2)|ζim−5%
30%(0.011; 0.211)(2.59; 3.38)|ζim−10%ζom−10%

The dependences of dimensionless face gap u = hm0 + zd on external force can be determined from equation (5), (6) system in a way

(9)a11z¯¨d+b11z¯˙d+c11z¯d+b12Ψ˙2+c12Ψ2=Faa21z¯¨d+b21z¯˙d+c21z¯d+b22Ψ˙2+c22Ψ2=0,

From (9) dynamic coeffisient for axial oscillations:

(10)Ad(ω)=z¯d0/z¯ds=|Wd(iω)|As

and

(11)φd(ω)=arctanRe[Wd(iω)]Im[Wd(iω)],

or

(12)Ad(ω)=z¯d0/z¯ds=1AsU222+V222U2+V2φd(ω)=arctanU22V+V22UU22U+V22V

where

U11=(a11χω)ω2+c110,V11=b11ω,U12=c12,V12=b12ω,U22=c22,U12=a21ω2+c21,V21=b21ω,V33=b22ω,U=(a11c22b11b22+a21c12+b21b12)ω2+(c11c22c21c12),V=(a11b22+a21b12)ω2+(b11c22b21c12)ω+(b22c11b12c21);b12=Bp,c12=CpS2p20,c21=QmOνz,a21=Qm0prmb4Δp20ζm0ζm0ζ2n/2νgz,b21=2π[νcz(1Λ)2]rmhm02+S2hm0,c22=Qm0p202(1p1p20+1Δp20),b22=Qm0prmb4Δp20ζm0ζm0ζ2n/2p20kr0μ+V2p20E.

On Fig. 2 presented typical amplitude-frequency characteristics of automatic balancing device with taking into account random changes in the stiffness and inertia coefficients.

Figure 2 Amplitude-frequency characteristics of automatic balancing device with taking into account random changes of basic parameters of face throttle
Figure 2

Amplitude-frequency characteristics of automatic balancing device with taking into account random changes of basic parameters of face throttle

If the changes result in a decrease in the natural frequency, this may lead to the operation of the device with increased values of the oscillation amplitudes in comparison with the calculated values, which in turn can lead to scuffing and failure of the device.

3 Conclusions

The results obtained in the work confirmed the necessity of considering the stochastic nature of the basic parameters of the face throttle of the automatic balancing device in the calculation of its dynamic characteristics. So, the possible deviation of natural frequency value from deterministic one makes from 7 (under 5% deviation interval of random values ζim, ζim, ζ2m, β) to 17% (under 15%). Decreasing of natural frequency value results in reduction of operating range of device with the small values of amplitudes of force vibrations.

The calculations given in this paper can be regarded as the first approximation to the solution of this problem. The result showed quantitative influence of the random changes of the hydraulic resistances and taper of face gap on the values of the natural frequency of balancing disk. It is important to note the fact that the deviation of the taper value in a smaller side from the calculated value can lead to negative consequences: displacement of natural frequency value to lower range with increasing of amplitudes values can provide to scuffing and total failure of whole device. And as it shown in other works of authors - to decreasing in the volumetric efficiency of the pump. In subsequent studies, one should consider the effect of a random change in the parameters of the cylindrical gap of the balancing device to its characteristics. The hydrodynamics of a cylindrical gap largely determines the pressure in the discharge chamber , which in turn is determined by the face gap value.

References

[1] Korczak A., Badania ukladow rownowazacych napor osiowy w wielostopniowych pompach odsrodkowych, 2005, Gliwice: Wyd. Politechniki Slaskiej.Search in Google Scholar

[2] Tarasevich Y., Savchenko I., Sovenko N., Savchenko A., Research of influence of random change of annular seal parameters on efficiency of centrifugal pump, Eastern-European Journal of Enterprise Technologies, 2016, 6/7, 84, 37-42.10.15587/1729-4061.2016.85410Search in Google Scholar

[3] Martsinkovskii V., Vorona P., Nasosy atomnyh elektrostancii, 1987, Moscow: Energoatomizdat.Search in Google Scholar

[4] Jedral W., Turbulentny przeplyw cieczy w hydraulicznie gladkich szczelinach poprecznych. Archiwum budomy maszyn, 1981, XXVIII, 1.Search in Google Scholar

[5] Tarasevich Y., Sovenko N., Savchenko I., Influence of the stochastic nature parameters of throttle channels on characteristic of automatic balancing device of the centrifugal pump. Lecture Notes in Mechanical Engineering (Springer), 2019.10.1007/978-3-319-93587-4_39Search in Google Scholar

[6] Zuyeva N., Calculation method of the improved design of automatic balancing device with hydraulically unloaded resiliently mounted ring. Procedia Engineering, 2012, 39, 387-394.10.1016/j.proeng.2012.07.042Search in Google Scholar

[7] Chegurko L., Razgruzochnye ustrojstva pitatelnyh nasosov teplovyh elektrostancij, 1978, Moskva: Energija.Search in Google Scholar

[8] Korczak A., Zarzycki M., Perchał S., Peczkis G., Pompa odśrodkowa wielostopniowa. Zgłoszenie patentowe P-354697 z 24.06.02.Search in Google Scholar

[9] Korczak A. Marcinkowski W.A. Peczkis G., Tarcza odciążająca siłę osiową w sprężarce wirnikowej. Zgłoszenie patentowe P-365432. 20.02.2004.Search in Google Scholar

Received: 2018-07-16
Accepted: 2018-08-24
Published Online: 2018-10-26

© 2018 Y. Tarasevych et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Article
  2. Real-scale comparison between simple and composite raw sewage sampling
  3. 10.1515/eng-2018-0017
  4. The risks associated with falling parts of glazed facades in case of fire
  5. Implementation of high speed machining in thin-walled aircraft integral elements
  6. Evaluating structural crashworthiness and progressive failure of double hull tanker under accidental grounding: bottom raking case
  7. Influence of Silica (SiO2) Loading on the Thermal and Swelling Properties of Hydrogenated-Nitrile-Butadiene-Rubber/Silica (HNBR/Silica) Composites
  8. Statistical Variations and New Correlation Models to Predict the Mechanical Behavior and Ultimate Shear Strength of Gypsum Rock
  9. Analytic approximate solutions to the chemically reactive solute transfer problem with partial slip in the flow of a viscous fluid over an exponentially stretching sheet with suction/blowing
  10. Thermo-mechanical behavior simulation coupled with the hydrostatic-pressure-dependent grain-scale fission gas swelling calculation for a monolithic UMo fuel plate under heterogeneous neutron irradiation
  11. Optimal Auxiliary Functions Method for viscous flow due to a stretching surface with partial slip
  12. Vibrations Analysis of Rectangular Plates with Clamped Corners
  13. Evaluating Lean Performance of Indian Small and Medium Sized Enterprises in Automotive Sector
  14. FPGA–implementation of PID-controller by differential evolution optimization
  15. Thermal properties and morphology of polypropylene based on exfoliated graphite nanoplatelets/nanomagnesium oxide
  16. A computer-based renewable resource management system for a construction company
  17. Hygrothermal Aging of Amine Epoxy: Reversible Static and Fatigue Properties
  18. The selected roof covering technologies in the aspect of their life cycle costs
  19. Influence of insulated glass units thickness and weight reduction on their functional properties
  20. Structural analysis of conditions determining the selection of construction technology for structures in the centres of urban agglomerations
  21. Selection of the optimal solution of acoustic screens in a graphical interpretation of biplot and radar charts method
  22. Subsidy Risk Related to Construction Projects: Seeking Causes
  23. Multidimensional sensitivity study of the fuzzy risk assessment module in the life cycle of building objects
  24. Planning repetitive construction projects considering technological constraints
  25. Identification of risk investment using the risk matrix on railway facilities
  26. Comparison of energy parameters of a centrifugal pump with a multi-piped impeller in cooperation either with an annular channel and a spiral channel
  27. Influence of the contractor’s payment method on the economic effectiveness of the construction project from the contractor’s point of view
  28. Special Issue Automation in Finland
  29. Diagnostics and Identification of Injection Duration of Common Rail Diesel Injectors
  30. An advanced teaching scheme for integrating problem-based learning in control education
  31. A survey of telerobotic surface finishing
  32. Wireless Light-Weight IEC 61850 Based Loss of Mains Protection for Smart Grid
  33. Smart Adaptive Big Data Analysis with Advanced Deep Learning
  34. Topical Issue Desktop Grids for High Performance Computing
  35. A Bitslice Implementation of Anderson’s Attack on A5/1
  36. Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues
  37. Templet Web: the use of volunteer computing approach in PaaS-style cloud
  38. Using virtualization to protect the proprietary material science applications in volunteer computing
  39. Parallel Processing of Images in Mobile Devices using BOINC
  40. “XANSONS for COD”: a new small BOINC project in crystallography
  41. Special Issue on Sustainable Energy, Engineering, Materials and Environment
  42. An experimental study on premixed CNG/H2/CO2 mixture flames
  43. Tidal current energy potential of Nalón river estuary assessment using a high precision flow model
  44. Special Spring Issue 2017
  45. Context Analysis of Customer Requests using a Hybrid Adaptive Neuro Fuzzy Inference System and Hidden Markov Models in the Natural Language Call Routing Problem
  46. Special Issue on Non-ferrous metals and minerals
  47. Study of strength properties of semi-finished products from economically alloyed high-strength aluminium-scandium alloys for application in automobile transport and shipbuilding
  48. Use of Humic Sorbent from Sapropel for Extraction of Palladium Ions from Chloride Solutions
  49. Topical Issue on Mathematical Modelling in Applied Sciences, II
  50. Numerical simulation of two-phase filtration in the near well bore zone
  51. Calculation of 3D Coordinates of a Point on the Basis of a Stereoscopic System
  52. The model of encryption algorithm based on non-positional polynomial notations and constructed on an SP-network
  53. A computational algorithm and the method of determining the temperature field along the length of the rod of variable cross section
  54. ICEUBI2017 - International Congress on Engineering-A Vision for the Future
  55. Use of condensed water from air conditioning systems
  56. Development of a 4 stroke spark ignition opposed piston engine
  57. Development of a Coreless Permanent Magnet Synchronous Motor for a Battery Electric Shell Eco Marathon Prototype Vehicle
  58. Removal of Cr, Cu and Zn from liquid effluents using the fine component of granitic residual soils
  59. A fuzzy reasoning approach to assess innovation risk in ecosystems
  60. Special Issue SEALCONF 2018
  61. Brush seal with thermo-regulating bimetal elements
  62. The CFD simulation of the flow structure in the sewage pump
  63. The investigation of the cavitation processes in the radial labyrinth pump
  64. Testing of the gaskets at liquid nitrogen and ambient temperature
  65. Probabilistic Approach to Determination of Dynamic Characteristics of Automatic Balancing Device
  66. The design method of rubber-metallic expansion joint
  67. The Specific Features of High-Velocity Magnetic Fluid Sealing Complexes
  68. Effect of contact pressure and sliding speed on the friction of polyurethane elastomer (EPUR) during sliding on steel under water wetting conditions
  69. Special Issue on Advance Material
  70. Effect of thermo-mechanical parameters on the mechanical properties of Eurofer97 steel for nuclear applications
  71. Failure prediction of axi-symmetric cup in deep drawing and expansion processes
  72. Characterization of cement composites based on recycled cellulosic waste paper fibres
  73. Innovative Soft Magnetic Composite Materials: Evaluation of magnetic and mechanical properties
  74. Statistical modelling of recrystallization and grain growth phenomena in stainless steels: effect of initial grain size distribution
  75. Annealing effect on microstructure and mechanical properties of Cu-Al alloy subjected to Cryo-ECAP
  76. Influence of heat treatment on corrosion resistance of Mg-Al-Zn alloy processed by severe plastic deformation
  77. The mechanical properties of OFHC copper and CuCrZr alloys after asymmetric rolling at ambient and cryogenic temperatures
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/eng-2018-0033/html
Scroll to top button