Abstract
A modular model for the kinetics of solid state phase transformations has been discussed, recognising three mechanisms: nucleation, growth, and impingement of growing new phase particles. For each of the three constituting mechanisms, several model descriptions can be incorporated. The choice for one specific (mathematical) description is based on microstructural information, thermodynamic data and available knowledge of the kinetics about the phase transformation concerned. The model is valid for both isothermally as well as non-isothermally conducted transformations. The model kinetic parameters are independent of the time – temperature program. In certain specific cases, the model can be simplified such that it reduces to so-called Johnson-Mehl-Avrami kinetics. From the kinetic model a method resulted to obtain the activation energies for nucleation and growth separately. The model has been applied successfully to a number of diverse transformations, involving the crystallisation of Pd40Cu30P20Ni10, the crystallisation of amorphous Mg –Cu and the austinite-ferrite transformation in Fe –Mn alloys.
Abstract
Es wird ein modular aufgebautes Modell für Festkörperphasenumwandlungen vorgestellt, basierend auf drei Prozessen: Keimbildung, Wachstum und Zusammentreffen der wachsenden Teilchen der neuen Phase. Für jedes der drei konstituierenden Prozesse können unterschiedliche Modellbeschreibungen eingesetzt werden. Die Auswahl für eine spezielle Beschreibung der betrachteten Phasenumwandlung stützt sich auf vorliegende Informationen zum Gefügeaufbau, zu thermodynamischen Daten und zum kinetischen Verhalten. Die Beschreibung gilt sowohl für isotherm als auch nicht-isotherm durchgeführte Phasenumwandlungen. Die kinetischen Parameter des Modells sind unabhängig vom vorliegenden Zeit –Temperatur-Programm. Für spezielle Randbedingungen kann das Modell so vereinfacht werden, dass sich die analytische Beschreibung für Phasenumwandlungen nach dem Modell von Johnson-Mehl-Avrami ergibt. Die hier vorgestellte Modellbeschreibung ermöglicht es die Aktivierungsenergie der Keimbildung und des Wachstums getrennt zu bestimmen.
Das Modell wurde zur Beschreibung unterschiedlicher Phasenumwandlungen erfolgreich angewendet, wie für die Kristallisation der amorphen Legierungen Pd40Cu30P20Ni10 und Mg–Cu, sowie für die Austenit– Ferrit-Umwandlung in Fe – Mn-Legierungen.
-
The authors are deeply indebted to Dr. A. T. W. Kempen, who, as a Ph. D. student, played a cardinal role in the development of the insights that led to this review paper.
References
1 Kempen, A.T.W.; Sommer, F.; Mittemeijer, E.J.: J.Mat.Sci. (2002) in press.Suche in Google Scholar
2 Kempen, A.T.W.; Sommer, F.; Mittemeijer, E.J.: Acta Mater. (2002) in press.Suche in Google Scholar
3 Kempen, A.T.W.; Nitsche, H.; Sommer, F.; Mittemeijer, E.J.: Metall. Mater. Trans. A (2002) in press.Suche in Google Scholar
4 Kempen, A.T.W.; Sommer, F.; Mittemeijer, E.J.: Acta Mater., in press.Suche in Google Scholar
5 Johnson,W. A.; Mehl, R. F.: Trans. Am. Inst. Min. (Metall.) Engs. 135 (1939) 416.Suche in Google Scholar
6 Avrami, M.: J. Chem. Phys. 7 (1939) 1103.10.1063/1.1750380Suche in Google Scholar
7 Avrami, M.: J. Chem. Phys. 8 (1940) 212.10.1063/1.1750631Suche in Google Scholar
8 Avrami, M.: J. Chem. Phys. 9 (1941) 177.10.1063/1.1750872Suche in Google Scholar
9 Mittemeijer, E.J.: J. Mat. Sci. 27 (1992) 3977.10.1007/BF01105093Suche in Google Scholar
10 Christian, J.W.: The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford (1965).Suche in Google Scholar
11 Porter, D.A.; Easterling, K.E.: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Wokingham (1981) 192.Suche in Google Scholar
12 Press,W.H.; Teukolsky, S.A.; Vetterling,W.T.; Flannery, B.P.: Numerical Recipes in C, Cambridge University Press, New York (1997) 408.Suche in Google Scholar
13 Starink, M.J.: J. Mater. Sci. 32 (1997) 4061.10.1023/A:1018649823542Suche in Google Scholar
14 Austin, J.B.; Rickett, R.L.: Metals Technol. (1938) 396.Suche in Google Scholar
15 Berkenpas, M.B.; Barnard, J.A.; Ramanujan, R.V.; Aaronson, H.I.: Scripta Metall. 20 (1986) 323.10.1016/0036-9748(86)90151-1Suche in Google Scholar
16 Kelton, K.F.: J. Non-Cryst. Solids 163 (1993) 283.10.1016/0022-3093(93)91306-NSuche in Google Scholar
17 Von Heimendahl, M.; Maussner, G.: J. Mat. Sci. 14 (1979) 1238.10.1007/BF00561309Suche in Google Scholar
18 Russew, K.; Nitsche, H.; Sommer, F.; Mittemeijer, E.J.: to be published.Suche in Google Scholar
19 Woldt, E.: J. Phys. Chem. Solids 53 (1992) 521.10.1016/0022-3697(92)90096-VSuche in Google Scholar
20 Duine, P.A.; Sietsma, J.; van den Beukel, A.; Vredenberg, A.M.: J. de Phys. Coll., 41C (1980) 563.Suche in Google Scholar
21 Mehrer, H. (ed.), Diffusion in Solids and Alloys, Vol. III/26, Springer-Verlag, Berlin (1990).10.1007/b37801Suche in Google Scholar
22 Blanke, H.; Köster, U., in: S. Steeb, H. Warlimount (eds.), Rapidly Quenched Metals, Elsevier Science Publishers, North-Holland, Amsterdam (1984) 227.10.1016/B978-0-444-86939-5.50057-9Suche in Google Scholar
23 Kempen, A.T.W.; Sommer, F.; Mittemeijer, E.J.: Thermochim. Acta 383 (2002) 21.10.1016/S0040-6031(01)00699-2Suche in Google Scholar
24 Krielaart, G.P.; van der Zwaag, S.: Mat. Sci. Tech. 14 (1998) 10.10.1179/mst.1998.14.1.10Suche in Google Scholar
25 Li, C.-M.; Sommer, F.; Mittemeijer, E.J.: Mat. Sci. Eng. A 325 (2002) 307.10.1016/S0921-5093(01)01459-9Suche in Google Scholar
26 Leitch, B.W.; Shi, S.Q.: Modell. Simul. in Mater. Sci. Eng. 4 (1996) 281.10.1088/0965-0393/4/3/003Suche in Google Scholar
27 Witusiewicz, V.T.; Sommer, F.; Mittemeijer, E.J.: to be submitted (2002).Suche in Google Scholar
28 Hillert, M.: Metall. Trans. A 6 (1975) 5.10.1007/BF02673664Suche in Google Scholar
29 Yang, Z.; Johnson, R.A.: Modell. Simul. in Mater. Sci. Eng. 1 (1993) 707.10.1088/0965-0393/1/5/010Suche in Google Scholar
© 2002 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Max-Planck-Institut für Metallforschung
- Articles/Aufsätze
- Towards a micromechanical understanding of biological surface devices
- Solid state phase transformation kinetics: a modular transformation model
- Electronic structure investigations of Ni and Cr films on (100)SrTiO3 substrates using electron energy-loss spectroscopy
- Surface magnetization reversal of sputtered CrO2
- Magnetic imaging with full-field soft X-ray microscopy
- Dislocation dynamics in sub-micron confinement: recent progress in Cu thin film plasticity
- Fatigue behavior of polycrystalline thin copper films
- Grain growth in magnetron-sputtered nickel films
- Thin Pd films on SrTiO3 (001) substrates: ab initio local-density-functional theory
- Coupled grain boundary and surface diffusion in a polycrystalline thin film constrained by substrate
- Gallium segregation at grain boundaries in aluminium
- Current work at the Stuttgart UHV diffusion bonding facility
- Bonding between Cu and α-Al2O3
- Compressive deformation of niobium sandwich-bonded to alumina
- SiO2-coated carbon nanotubes: theory and experiment
- Simulation of solidification structures of binary alloys
- Gaseous nitriding of iron-chromium alloys
- Deposition of ceramic materials from aqueous solution induced by organic templates
- Notifications/Mitteilungen
- Personen
- Books
- Information
- DGM Further Training
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Max-Planck-Institut für Metallforschung
- Articles/Aufsätze
- Towards a micromechanical understanding of biological surface devices
- Solid state phase transformation kinetics: a modular transformation model
- Electronic structure investigations of Ni and Cr films on (100)SrTiO3 substrates using electron energy-loss spectroscopy
- Surface magnetization reversal of sputtered CrO2
- Magnetic imaging with full-field soft X-ray microscopy
- Dislocation dynamics in sub-micron confinement: recent progress in Cu thin film plasticity
- Fatigue behavior of polycrystalline thin copper films
- Grain growth in magnetron-sputtered nickel films
- Thin Pd films on SrTiO3 (001) substrates: ab initio local-density-functional theory
- Coupled grain boundary and surface diffusion in a polycrystalline thin film constrained by substrate
- Gallium segregation at grain boundaries in aluminium
- Current work at the Stuttgart UHV diffusion bonding facility
- Bonding between Cu and α-Al2O3
- Compressive deformation of niobium sandwich-bonded to alumina
- SiO2-coated carbon nanotubes: theory and experiment
- Simulation of solidification structures of binary alloys
- Gaseous nitriding of iron-chromium alloys
- Deposition of ceramic materials from aqueous solution induced by organic templates
- Notifications/Mitteilungen
- Personen
- Books
- Information
- DGM Further Training