Abstract
A discussion of the multiparticle diffusion-limited aggregation model for the simulation of solidification structures from a binary alloy melt under isothermal conditions is presented. The model incorporates simultaneous diffusion of all atoms in the liquid, atom attachment kinetics at the solid/liquid interface, depending on the local number and nature of bonds formed with the solid, and a surface rearrangement process that mimics the capillary (Gibbs-Thomson) effect. The influence of the local surface energy minimisation on the evolution of dendritic and regular lamellar eutectic structures and on the growth rate of a solidified layer is discussed. The role of the next-nearest neighbour interaction on the energy anisotropy of the internal (solid/solid) and external (solid/liquid) interfaces is identified with respect to the development of dendritic, seaweed and regular lamellar eutectic structures. In the case that no chemical driving force exists for the incorporation of solute (impurity) atoms in the solid, a thermodynamic condition is formulated according to which solidification of such solute atoms can yet occur.
References
1 Kurz, W.; Trivedi, R.: Acta Metall. Mater. 38 (1990) 1.10.1016/0956-7151(90)90129-5Search in Google Scholar
2 Boettinger, W.J.; Coriell, S.R.; Greer, A.L.; Karma, A.; Kurz, W.; Rappaz, M.; Trivedi, R.: Acta Mater. 48 (2000) 43.10.1016/S1359-6454(99)00287-6Search in Google Scholar
3 Wulff, G.: Z. Kristallogr . Mineral 34 (1901) 449.10.1524/zkri.1901.34.1.449Search in Google Scholar
4 Herring, C.: Phys. Rev. 82 (1951) 87; in: R. Gomer; C.S. Smith (ed.), Structure and Properties of Solid Surfaces, University of Chicago Press (1953) 5.10.1103/PhysRev.82.87Search in Google Scholar
5 Saito, Y. in: T. Nishinaga; K. Nishioka; J. Harada; A. Sasaki; H. Takei (eds.), Advances in the Understanding of Crystal Growth Mechanisms, Elsevier Science, Amsterdam (1997) 47.Search in Google Scholar
6 Kurz, W.; Fisher, D.J.: Fundamentals of Solidifications, Trans Tech Publications, Aedermannsdorf (1998).10.4028/www.scientific.net/RC.35Search in Google Scholar
7 Langer, J.S.: Rev. Mod. Phys. 52 (1980) 1.10.1103/RevModPhys.52.1Search in Google Scholar
8 Mullins, W.W.; Sekerka, R.F.: J. Appl. Phys. 35 (1967) 444.10.1063/1.1713333Search in Google Scholar
9 Haemers, T.A.M.; Rickerby, D.G.; Mittemeijer, E.J.: Modelling Simul. Mater. Sci. Eng. 35 (1999) 233.10.1088/0965-0393/7/2/007Search in Google Scholar
10 Mullins, W.W.; Sekerka, R.F.: J. Appl. Phys. 35 (1967) 444.10.1063/1.1713333Search in Google Scholar
11 Langer, J.S.: Rev. Mod. Phys. 52 (1980) 1.10.1103/RevModPhys.52.1Search in Google Scholar
12 Muller-Krumbhaar, H.; Langer, J.S.: Acta Metall. 29 (1981) 145.10.1016/0001-6160(81)90095-XSearch in Google Scholar
13 Sander, L.M.; Ramanlal, P.; Ben-Jacob, E.: Phys. Rev. A 32 (1985) 3160.10.1103/PhysRevA.32.3160Search in Google Scholar
14 Kurz, W.; Fisher, D.J.: Acta Metall. 29 (1991) 11.10.1016/0001-6160(81)90082-1Search in Google Scholar
15 Trivedi, R.; Kurz, W.: Acta Metall. Mater. 45 (1994) 15.10.1016/0956-7151(94)90044-2Search in Google Scholar
16 Ihle, T.; Müller-Krumbhaar, H.: Phys. Rev. E 49 (1994) 2972.10.1103/PhysRevE.49.2972Search in Google Scholar
17 Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E.: J. Chem. Phys. 21 (1953) 1087.10.1063/1.1699114Search in Google Scholar
18 Chernov, A.A.; Lewis, J.: J. Phys. Chem. Solids 28 (1967) 2185.10.1016/0022-3697(67)90243-0Search in Google Scholar
19 Müller-Krumbhaar, H, in: K. Binder (ed.), Monte Carlo Methods in Statistical Physics, Springer-Verlag, Berlin (1979) 295.Search in Google Scholar
20 Witten, T.A.; Sander, L.M.: Phys. Rev. Lett. 47 (1981) 1400; Phys. Rev. B 27 (1983) 5686.10.1103/PhysRevLett.47.1400Search in Google Scholar
21 Brener, E.; Müller-Krumbhaar, H.; Temkin, D.; Abel, T.: Physica A 249 (1998) 73.10.1016/S0378-4371(97)00433-0Search in Google Scholar
22 Banavar, J.R.; Kohmoto, M.; Roberts, J.: Phys. Rev. A 33 (1986) 2065.10.1103/PhysRevA.33.2065Search in Google Scholar
23 Vicsek, T.: Phys. Rev. Lett. 53 (1984) 2281; Phys. Rev. A 32 (1985) 3084.10.1103/PhysRevLett.53.2281Search in Google Scholar
24 Xiao, R.F.; Alexander, J.I.D.; Rosenberger, F.: Phys. Rev. A 38 (1988) 2447; J. Crystal Growth 100 (1990) 313.10.1103/PhysRevA.38.2447Search in Google Scholar
25 Voss, R.A.: J. Stat. Phys. 36 (1984) 861; Phys. Rev. B 30 (1984) 334.10.1007/BF01012945Search in Google Scholar
26 Das, A.; Mittemeijer, E.J.: Metall. Mater. Trans. A 31 (2000) 2049.10.1007/s11661-000-0232-xSearch in Google Scholar
27 Das, A.; Mittemeijer, E.J.: Philos. Mag. A 81 (2001) 2725.10.1080/01418610108216666Search in Google Scholar
28 Binder, K.: Monte Carlo Methods in Statistical Physics, Springer-Verlag, Berlin (1986) 3.10.1007/978-3-642-82803-4Search in Google Scholar
29 Akamatsu, S.; Faivre, G.; Ihle, T.: Phys. Rev. E 51 (1995) 4751.10.1103/PhysRevE.51.4751Search in Google Scholar
30 Brener, E.; Müller-Krumbhaar, H.; Temkin, D.: Phys. Rev. E 54 (1996) 2714.10.1103/PhysRevE.54.2714Search in Google Scholar
31 Ben-Jacob, E.; Deutscher, G.; Garik, P.; Goldenfeld, N.; Lereah, Y.: Phys. Rev. Lett. 57 (1986) 1903.10.1103/PhysRevLett.57.1903Search in Google Scholar
32 Jackson, K.A.; Hunt, J.D.: Trans. Metall. Soc. AIME 236 (1966) 1129.Search in Google Scholar
33 Fisher, D.J.; Kurz, W.: Acta Metall. 28 (1980) 777.10.1016/0001-6160(80)90155-8Search in Google Scholar
34 Trivedi, R.; Magnin, P.; Kurz, W.: Acta Metall. 35 (1987) 971.10.1016/0001-6160(87)90176-3Search in Google Scholar
© 2002 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Max-Planck-Institut für Metallforschung
- Articles/Aufsätze
- Towards a micromechanical understanding of biological surface devices
- Solid state phase transformation kinetics: a modular transformation model
- Electronic structure investigations of Ni and Cr films on (100)SrTiO3 substrates using electron energy-loss spectroscopy
- Surface magnetization reversal of sputtered CrO2
- Magnetic imaging with full-field soft X-ray microscopy
- Dislocation dynamics in sub-micron confinement: recent progress in Cu thin film plasticity
- Fatigue behavior of polycrystalline thin copper films
- Grain growth in magnetron-sputtered nickel films
- Thin Pd films on SrTiO3 (001) substrates: ab initio local-density-functional theory
- Coupled grain boundary and surface diffusion in a polycrystalline thin film constrained by substrate
- Gallium segregation at grain boundaries in aluminium
- Current work at the Stuttgart UHV diffusion bonding facility
- Bonding between Cu and α-Al2O3
- Compressive deformation of niobium sandwich-bonded to alumina
- SiO2-coated carbon nanotubes: theory and experiment
- Simulation of solidification structures of binary alloys
- Gaseous nitriding of iron-chromium alloys
- Deposition of ceramic materials from aqueous solution induced by organic templates
- Notifications/Mitteilungen
- Personen
- Books
- Information
- DGM Further Training
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Max-Planck-Institut für Metallforschung
- Articles/Aufsätze
- Towards a micromechanical understanding of biological surface devices
- Solid state phase transformation kinetics: a modular transformation model
- Electronic structure investigations of Ni and Cr films on (100)SrTiO3 substrates using electron energy-loss spectroscopy
- Surface magnetization reversal of sputtered CrO2
- Magnetic imaging with full-field soft X-ray microscopy
- Dislocation dynamics in sub-micron confinement: recent progress in Cu thin film plasticity
- Fatigue behavior of polycrystalline thin copper films
- Grain growth in magnetron-sputtered nickel films
- Thin Pd films on SrTiO3 (001) substrates: ab initio local-density-functional theory
- Coupled grain boundary and surface diffusion in a polycrystalline thin film constrained by substrate
- Gallium segregation at grain boundaries in aluminium
- Current work at the Stuttgart UHV diffusion bonding facility
- Bonding between Cu and α-Al2O3
- Compressive deformation of niobium sandwich-bonded to alumina
- SiO2-coated carbon nanotubes: theory and experiment
- Simulation of solidification structures of binary alloys
- Gaseous nitriding of iron-chromium alloys
- Deposition of ceramic materials from aqueous solution induced by organic templates
- Notifications/Mitteilungen
- Personen
- Books
- Information
- DGM Further Training