Home Fatigue behavior of polycrystalline thin copper films
Article
Licensed
Unlicensed Requires Authentication

Fatigue behavior of polycrystalline thin copper films

  • O. Kraft EMAIL logo , P. Wellner , M. Hommel , R. Schwaiger and E. Arzt
Published/Copyright: January 31, 2022
Become an author with De Gruyter Brill

Abstract

Fatigue, a common damage and failure mechanism in bulk metals, is largely unexplored for thin films. In the present paper, we report on the fatigue behavior of Cu films with thicknesses in the range 0.4– 3.1μm on deformable substrates. Films thicker than 1 μm seem to behave like bulk Cu and follow a Manson-Coffin relationship with a fatigue exponent and ductility of about 0.5 and 20%, respectively. For the sub-micron thick films, a clear size effect is observed: the damage morphology changes and the lifetime increases significantly. Based on a microscopical damage analysis, the following sequence for the fatigue damage evolution in the Cu films is suggested: (i) in large grains, extrusions at the film surface and voids at the interface to the substrate are formed, (ii) cracks are nucleated at these voids and grow towards the film surface, and (iii) cracks connect intergranularly to form a continuous pattern of cracks and extrusions in the film. It is argued that void nucleation is the result of the formation of vacancies due to the annihilation of edge dislocations.


Dr. O. Kraft Max-Planck-Institut für Metallforschung Heisenbergstr. 3, D-70569 Stuttgart, Germany Tel.: +49 711 689 3439 Fax: +49 711 689 3412

Enlightening discussions with U. Essmann, H. Mughrabi, and L. M. Brown are gratefully acknowledged. The FIB system was procured from DFG funds (Leibniz programme).


References

1 Nix, W.D.: Met. Trans. A 20 (1989) 2217.10.1007/BF02666659Search in Google Scholar

2 Arzt, E.: Acta metall. mater. 46 (1998) 5611.10.1016/S1359-6454(98)00231-6Search in Google Scholar

3 Chaudhari, P.: Phil. Mag. A 39 (1979) 507.10.1080/01418617908239287Search in Google Scholar

4 Ronay, M.: Phil. Mag. A 40 (1979) 145.10.1080/01418617908243094Search in Google Scholar

5 Thompson, C.V.: J. Mater. Res. 8 (1993) 237.10.1557/JMR.1993.0237Search in Google Scholar

6 Philofsky, E.; Ravi, K.; Hall, E.; Black, J., in: 9th Annual Proc. of Reliability Physics, IEEE, New York, NY (1971) 120.Search in Google Scholar

7 Keller, R.R.; Mönig, R.; Volkert, C.A.; Arzt, E.; Schwaiger, R.; Kraft, O., to be published in: 6th International Workshop on Stress-Induced Phenomena in Metallization, AIP Conf. Proc., Woodbury, NY.Search in Google Scholar

8 Huang, M.; Suo, Z.; Ma, Q.; Fujimoto, H.: J. Mater. Res. 15 (2000) 1239.10.1557/JMR.2000.0177Search in Google Scholar

9 Read, D.T.; Dally, J.W.: J. Electronic Packaging 117 (1995) 1.10.1115/1.2792062Search in Google Scholar

10 Read, D.T.: Int. J. Fatigue 20 (1998) 203.10.1016/S0142-1123(97)00080-7Search in Google Scholar

11 Merchant, H.D.; Minor, M.G.; Liu, Y.L.: J. Electron Mater. 28 (1999) 998.10.1007/s11664-999-0176-xSearch in Google Scholar

12 Oshida, Y.; Chen, P.C.: J. Electronic Packaging 113 (1991) 58.10.1115/1.2905367Search in Google Scholar

13 Schwaiger, R.; Kraft, O.: Scripta mater. 41 (1999) 823.10.1016/S1359-6462(99)00231-6Search in Google Scholar

14 Kraft, O.; Schwaiger, R.; Wellner, P.: Mat. Sci. Eng. A 319–321 (2001) 919.10.1016/S0921-5093(01)00990-XSearch in Google Scholar

15 Schwaiger, R.: Ph.D. Thesis, Universität Stuttgart (2001).Search in Google Scholar

16 Essmann, U.; Mughrabi, H.: Phil. Mag. A 40 (1979) 731.10.1080/01418617908234871Search in Google Scholar

17 Coffin, L.R.J.: Trans. ASME 76 (1954) 931.Search in Google Scholar

18 Manson, S.S.: National Advisory Comission on Aeronautics, Report 1170, Lewis Flight Propulsion Laboratory, Cleveland, OH (1954).Search in Google Scholar

19 Hommel, M.; Kraft, O.; Arzt, E.: J. Mater. Res. 14 (1999) 2373.10.1557/JMR.1999.0317Search in Google Scholar

20 Kuschke, W.-M.; Kretschmann, A.; Keller, R.-M.; Vinci, R.P.; Kaufmann, C.; Arzt, E.: J. Mater. Res. 13 (1998) 2962.10.1557/JMR.1998.0405Search in Google Scholar

21 Kretschmann, A.; Kuschke, W.-M.; Baker, S.P.; Arzt, E.: Mat. Res. Soc. Symp. Proc. 436 (1996) 59.10.1557/PROC-436-59Search in Google Scholar

22 Hommel, M.; Kraft, O.: Acta mater. 49 (2001) 3935.10.1016/S1359-6454(01)00293-2Search in Google Scholar

23 Agnew, S.R.; Vinogradov, A.Y.; Hashimoto, S.;Weertman, J.R.: J. Electron Mater. 28 (1999) 1038.10.1007/s11664-999-0181-0Search in Google Scholar

24 Mughrabi, H.; Wang, R., in: P. Lukás, J. Polák (eds.), Basic Mechanisms in Fatigue of Metals, Elsevier, Amsterdam (1988) 1.Search in Google Scholar

25 Polák, J.: Mater. Sci. Eng. A 92 (1987) 71.10.1016/0025-5416(87)90157-1Search in Google Scholar

26 Essmann, U.; Gösele, U.; Mughrabi, H.: Phil. Mag. A 44 (1981) 405.10.1080/01418618108239541Search in Google Scholar

27 Simmons, R.O.; Balluffi, R.W.: Phys. Rev. 117 (1960) 52.10.1103/PhysRev.117.52Search in Google Scholar

28 Frost, H.J.; Ashby, M.F.: Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford (1982).Search in Google Scholar

Received: 2002-02-19
Published Online: 2022-01-31

© 2002 Carl Hanser Verlag, München

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0068/html
Scroll to top button