Startseite Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate

  • Shahriar Hojjati Emami , Ali Moradi Ahmad Abad , Shahin Bonakdar , Mohammad Reza Tahriri , Ali Samadikuchaksaraei und Mohammad Ali Bahar
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The objective of the present study was to investigate the properties of porous chitosan–gelatin scaffolds. The modification of samples was done by incorporation of chondroitin-6-sulphate in bulk phase through cross linking with glutaraldehyde. Scaffolds were prepared using the freeze-drying method. An in vitro cell culture of fibroblasts L-929 was employed to study the growth and attachment of cells to the scaffolds. Optical microscopy showed high cell density for the sample supplemented with chondroitin-6-sulphate. Scanning electron microscopy was used to analyze the growth and attachment of cells. Results of the tests revealed that the sample with a 65: 35 ratio of gelatin and chitosan was suitable for both cell attachment and proliferation in fibroblast cultures. The cell viability 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay with human mesenchymal stem cells on the previous sample showed about 80 % increase in cell viability. To analyze the mechanical properties of scaffolds, the tensile strengths of the samples were measured and all samples showed stress at break above 0.1 MPa. Optimum substratum composition for porous scaffolds would involve a compromise between the desired attributes of biocompatibility, promotion of cell growth and mechanical strength.


* Correspondence address, Shahriar Hojjati Emami Department of Biomedical EngineeringAmirkabir University of Technology, Tehran Tel.: +98 21 6454 2367 Fax: +98 21 6646 8186 E-mail:

References

[1] Y.S.Choi, S.R.Hong, Y.M.Lee, K.W.Song: Biomaterials20 (1999) 409. 10.1016/S0142-9612(98)00180-XSuche in Google Scholar

[2] Y.S.Choi, S.R.Hong, Y.M.K.Song, M.H.Park: J. Biomed. Mater. Res.48 (1999) 631. 10.1002/(SICI)1097-4636(1999)48:5<631::AID-JBM6>3.0.CO;2-YSuche in Google Scholar

[3] H.Kang, Y.Tabata, Y.Ikada: Biomaterials20 (1999) 1339. 10.1016/S0142-9612(99)00036-8Suche in Google Scholar

[4] S.B.Lee, H.W.Jeon, Y.W.Lee, Y.S.Nam, M.H.Park: Biomaterials24 (2003) 2503. 10.1016/S0142-9612(03)00003-6Suche in Google Scholar

[5] C.C.Leffler, B.W.Muller: Int. J. Pharm.194 (2002) 229. 10.1016/S0378-5173(99)00383-XSuche in Google Scholar

[6] Y.Huang, S.Snyeri, M.Siewe, A.Moshfeghian, S.V.Madihally: Biomaterials26 (2005) 7616. 16005510; 10.1016/j.biomaterials.2005.05.036Suche in Google Scholar

[7] H.Liu, J.Mao, K.Yao, G.Yang, L.Cui, Y.Cao: J. Biomat. Sci. Polym. Ed.15 (2004) 25. 15027841; 10.1163/156856204322752219Suche in Google Scholar

[8] J.M.H.Wang, J.Chen: Biomaterials22 (2001) 331. 10.1016/S0142-9612(00)00188-5Suche in Google Scholar

[9] L.Ma, C.Goo, Z.Mao, J.Zhou, J.Schen, X.Hu, C.Han: Biomaterials24 (2003) 4833. 10.1016/S0142-9612(03)00374-0Suche in Google Scholar

[10] C.S.Oshorn, W.H.Reid, M.H.Garnt: Biomaterials20 (1999) 283. 10.1016/S0142-9612(98)00179-3Suche in Google Scholar

[11] J.S.Mao, H.F.Liu, Y.J.Yin, K.D.Yao: Biomaterials24 (2003) 1821. 10.1016/S0142-9612(02)00576-8Suche in Google Scholar

[12] S.B.Lee, Y.H.Kim, M.S.Chong, S.H.Hong, Y.M.Lee: Biomaterials26 (2005) 1961. 15576170; 10.1016/j.biomaterials.2004.06.032Suche in Google Scholar

[13] I.Jones, L.Currie, R.Martin: Brit. J. Plast. Surg.55 (2002) 185.12041969; 10.1054/bjps.2002.3800Suche in Google Scholar

[14] D.Eisenbad, N.G.Huang, S.Luke, M.Silberklang: Wounds16 (2004) 2.Suche in Google Scholar

[15] G.Chen, T.Sato, H.Ohgushi, T.Ushida, J.Tanaka: Biomaterials26 (2005) 2559. 15585258; 10.1016/j.biomaterials.2004.07.034Suche in Google Scholar

[16] T.Guo, J.Zhao, J.Chang, Z.Ding, H.Hong, J.Chen, J.Zhang: Biomaterials27 (2006) 1095. 16143394; 10.1016/j.biomaterials.2005.08.015Suche in Google Scholar

[17] J.S.Moo, L.G.Zhao, Y.J.Yin, K.D.Yao: Biomaterials24 (2003) 1067. 10.1016/S0142-9612(02)00442-8Suche in Google Scholar

[18] S.Yang, K.Leong, Z.Du, C.Chua: Tissue Eng.7 (2001) 679.11749726; 10.1089/107632701753337645Suche in Google Scholar PubMed

[19] M.T.Khorasani, H.Mirzadeh, S.Irani: Radiat. Phys. Chem.77 (2008) 280. 10.1016/j.radphyschem.2007.05.013Suche in Google Scholar

[20] A.M.M.Sadeghi, F.A.Dorkoosh, M.R.Avadi, P.Saadat, M.Rafiee-Tehrani, H.E.Junginger: Int. J. Pharm.355 (2008) 299.18206322; 10.1016/j.ijpharm.2007.11.052Suche in Google Scholar PubMed

Received: 2009-1-17
Accepted: 2010-7-26
Published Online: 2013-05-31
Published in Print: 2010-10-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial October 2010
  5. History
  6. Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
  7. Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
  8. Basic
  9. Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
  10. Thermodynamic assessment of the Mn–Ni–O system
  11. Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
  12. In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
  13. Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
  14. Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
  15. Applied
  16. Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
  17. The role of talc in preparing steatite slurries suitable for spray-drying
  18. Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
  19. Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
  20. Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
  21. The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
  22. Preparation and photocatalytic properties of TiO2 film produced via spin coating
  23. DGM News
  24. Personal
Heruntergeladen am 20.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110403/html
Button zum nach oben scrollen