Startseite Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors

  • Jingxia Qiu , Jiwei Liu , Jianrong Chen , Yuqing Miao und Shanqing Zhang
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Prussian blue nanoparticles were synthesized by employing polymyxin B/sodium bis(2-efhylexyl) sulfosuccinate/water/isooctane reverse microemulsion. Fourier transform infrared spectroscopy, scanning electron microscopy and electrochemical methods were used to characterize the resultant nanoparticles, that were subsequently used to fabricate prussian blue-based glucose biosensors. Prussian blue nanoparticles were assembled onto a cysteine-modified Au electrode surface and then glutaraldehyde was used to cross-link glucose oxidase on the Prussian blue modified electrode. Both the electrochemical properties of Prussian blue and biocatalytical performance of glucose oxidase were investigated using cyclic voltammetry. After the biosensors were optimized, the glucose biosensors had a linear range from 6.7 μM to 2.0 mM and a relative standard deviation of 4.38%.


* Correspondence address, Dr. Yuqing Miao Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China, Tel/Fax: +86 579 82283109. E-mail:

References

[1] F.Ricci, F.Arduini, A.Amine, D.Moscone, G.Palleschi: Electroanal. Chem.563 (2004) 229. 10.1016/j.jelechem.2003.09.016Suche in Google Scholar

[2] G.Wang, J.H.Zhou, J.H.Li: Biosens. Bioelectron.22 (2007) 2921.17218090; 10.1016/j.bios.2006.12.002Suche in Google Scholar

[3] J.G.Moore, E.J.Lochner, A.E.StiegmanAngew: Chem. Int. Ed.46 (2007) 8653.Suche in Google Scholar

[4] G.Li, Y.Wang, H.Xu: Sensors7 (2007) 239. 10.3390/s7030239Suche in Google Scholar

[5] C.M.L.Carvalho, J.M.S.Cabral: Biochimie82 (2000) 1063. 10.1016/S0300-9084(00)01187-1Suche in Google Scholar

[6] M.Iijima, Y.Yonemochi, M.Tsukada, H.Kamiya,: J. Colloid Interf. Sci.298 (2006) 202. 16386266; 10.1016/j.jcis.2005.11.061Suche in Google Scholar PubMed

[7] F.F.Zhang, Q.Wan, C.X.Li, X.L.Wang, Z. Q.Zhu, Y. Z.Xian, L.T.Jin, K.Yamamoto: Anal. Bioanal. Chem.380 (2004) 637.15517210; 10.1007/s00216-004-2804-xSuche in Google Scholar PubMed

[8] S.Shipovskov, D.Trofimova, E.Saprykin, A.Christenson, T.Ruzgas, A.V.Levashov, E.E.Ferapontova: Anal. Chem.77 (2005) 7074. 16255612; 10.1021/ac050505dSuche in Google Scholar PubMed

[9] J.Jang, H.Yoon: Langmuir21 (2005) 11484. 16285830; 10.1021/la051447uSuche in Google Scholar PubMed

[10] S.J.Ding, B.W.Chang, C.C.Wu, C.J.Chen, H.C.Chang: Electrochem. Commun.9 (2007) 1206. 10.1016/j.elecom.2006.12.029Suche in Google Scholar

[11] J.D.Qiu, H.Z.Peng, R.P.Liang, J.Li, X.H.Xia: Langmuir23 (2007) 2133. 17279705; 10.1021/la062788qSuche in Google Scholar PubMed

[12] A.A.Karyakin, Electroanalysis13 (2001) 813. 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-ZSuche in Google Scholar

[13] R.Koncki, T.Lenarczuk, A.Radomska, S.Glab: Analyst136 (2001) 1080. 11478639; 10.1039/b103044mSuche in Google Scholar

[14] C.G.Tsiafoulis, P.N.Trikalitis, M.I.Prodromidis: Electrochem. Commun.7 (2005) 1398. 10.1016/j.elecom.2005.10.001Suche in Google Scholar

[15] J.J.Garcia-Jareno, D.Gimenez-Romero, F.Vicente, C.Gabrielli, M.Keddam, H.Perrot: J. Phys. Chem. B107 (2003) 11321. 10.1021/jp035387hSuche in Google Scholar

[16] R.A.Kamin, G.S.Wilson: Anal. Chem.52 (1980) 1198. 10.1021/ac50058a010Suche in Google Scholar

[17] P.N.Mashazi, K.I.Ozoemena, T.Nyokong: Electrochim. Acta52 (2006) 177. 10.1016/j.electacta.2006.04.056Suche in Google Scholar

[18] J.P.Li, T.Z.Peng, Y.Q.Peng: Electroanal.15 (2003) 1031. 10.1002/elan.200390124Suche in Google Scholar

Received: 2009-5-18
Accepted: 2010-7-30
Published Online: 2013-05-31
Published in Print: 2010-10-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial October 2010
  5. History
  6. Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
  7. Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
  8. Basic
  9. Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
  10. Thermodynamic assessment of the Mn–Ni–O system
  11. Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
  12. In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
  13. Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
  14. Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
  15. Applied
  16. Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
  17. The role of talc in preparing steatite slurries suitable for spray-drying
  18. Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
  19. Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
  20. Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
  21. The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
  22. Preparation and photocatalytic properties of TiO2 film produced via spin coating
  23. DGM News
  24. Personal
Heruntergeladen am 20.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110407/html
Button zum nach oben scrollen