Home Preparation and photocatalytic properties of TiO2 film produced via spin coating
Article
Licensed
Unlicensed Requires Authentication

Preparation and photocatalytic properties of TiO2 film produced via spin coating

  • Jun Yao , Yunjie Yin and Chaoxia Wang
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

TiO2 thin film coated onto glass was prepared by a spin coating method without being calcined at high temperature. X-ray diffraction showed that the TiO2 film consisted of a single anatase phase. Good adhesion was obtained between the film and the substrate. UV-vis spectra showed that the TiO2 film was transparent in the visible range and opaque in the ultraviolet range. The transmittance decreased and the absorption edge shifted as the layers increased. The photocatalytic performance of the TiO2 film was evaluated by degradation of methylene blue. The results indicated that the degradation of TiO2 film spun for 3 times (each time for 30 s) at a rotation speed of 2 500 revolutions per minute reached 93.3 %. The TiO2 film could be reused for more than 5 times without great decrease in photocatalytic activity.


* Correspondence address, Professor Chaoxia Wang Key Laboratory of Eco-Textile, Ministry of Education Jiangnan University 214122 Wuxi, China Tel.: +86 0510 8591 2105 Fax: +86 0510 8591 2105 E-mail:

References

[1] A.Modestov, V.Glezer, I.Marjasin, O.Lev: J. Phys. Chem. B101 (1997) 4623. 10.1021/jp970132nSearch in Google Scholar

[2] G.Subramania, K.Constant, R.Biswas, M.M.Sigalas, K.M.Ho: J. Am. Ceram. Soc.85 (2002) 383. 10.1111/j.1151-2916.2002.tb00284.xSearch in Google Scholar

[3] K.Shimizu, H.Imai, H.Hirashima, K.Tsukuma: Thin Solid Films.351 (1999) 220. 10.1016/S0040-6090(99)00084-xSearch in Google Scholar

[4] P.I.Gouma, M.J.Mills, K.H.Sandhage: J. Am. Ceram. Soc.83 (2000) 1007. 10.1111/j.1151-2916.2000.tb01320.xSearch in Google Scholar

[5] L.Ge, M.X.Xu, M.Sun: J. Sol-Gel. Sci. Techn.60 (2006) 287. 10.1016/j.matlet.2005.08.036Search in Google Scholar

[6] I.Hiromichi, M.Teraski, H.Katsuki: J. Sol-Gel. Sci. Techn.22 (2001) 33. 10.1023/A:1011256118320Search in Google Scholar

[7] W.Y.Gan, H.J.Zhao, A.Rose: Appl. Catal. A-Gen.35 (2009) 48. 10.1016/j.apcata.2008.10.054Search in Google Scholar

[8] Y.J.Chen, D.D.Dionysios: Appl. Catal. B-Environ.69 (2006) 24. 10.1016/j.apcatb.2006.05.002Search in Google Scholar

[9] I.N.Martyanov, K.J.Klabunde: J. Catal.225 (2004) 408. 10.1016/j.jcat.2004.04.019Search in Google Scholar

[10] D.S.Kim, S.K.Kwak: Environ. Sci. Technol.43 (2009) 148. 10.1021/es801029hSearch in Google Scholar PubMed

[11] B.T.Jiang, S.Y.Zhang, X.Z.Guo, B.K.Jin, Y.P.Tian: Appl. Surf. Sci.255 (2009) 5975. 10.1016/j.apsusc.2009.01.049Search in Google Scholar

[12] X.Q.Huang, N.Li: J. Alloy. Compd.465 (2008) 317. 10.1016/j.jallcom.2007.10.093Search in Google Scholar

[13] N.Negishi, K.Takeuchi, T.Ibusuki: J. Mater. Sci.33 (1998) 5789. 10.1023/A:1004441829285Search in Google Scholar

[14] J.G.Yu, X.J.Zhao, Q.N.Zhao: J. Mater Sci. Lett.19 (2000) 1015. 10.1023/A:1006705316651Search in Google Scholar

[15] F.Cheng, Z.Peng, C.Liao, Z.Xu, S.Gao, C.Yan, D.Wang: J. Solid. State. Chem.107 (1998) 471. 10.1016/S0038-1098(98)00265-8Search in Google Scholar

[16] E.L.Crepaldi, G.J.A.Soler, D.Crosso, F.Cagnol, F.Ribot, A.Sanchez: J. Am. Chem. Soc.125 (2003) 9770. 12904043; 10.1021/ja030070gSearch in Google Scholar

[17] J.Yang, S.Mei, J.M.F.Ferreira: J. Am. Ceram. Soc.87 (2004) 1616. 10.1111/j.1551-2916.2004.01616.xSearch in Google Scholar

[18] D.Shimono, S.Tanaka, T.Torikai, T.Watari, M.Murano: J. Ceram. Process. Res.21 (2001) 84.Search in Google Scholar

[19] A.Hrussanova, L.Mirkova, T.Dobrev: J. Appl. Electrochem.32 (2002) 505. 10.1023/A:1016591810240Search in Google Scholar

[20] R.Fretwell, P.Douglas: J. Photoch. Photobiol. A. Chem.143 (2001) 229. 10.1016/S1010-6030(01)00526-3Search in Google Scholar

[21] A.G.Emslie, E.T.Bonnet, L.G.Peck: J. Appl. Phys.29 (1998) 858. 10.1063/1.1723300Search in Google Scholar

[22] A.Hattori, H.Tada: J. Sol-Gel. Sci. Techn.22 (2001) 47. 10.1023/A:1011260219229Search in Google Scholar

[23] O.C.Monteiro, M.H.M.Mendonca, M.I.S.Pereira, J.M.F.Nogueira: J. Solid. State. Electr.10 (2006) 41. 10.1007/s10008-005-0652-zSearch in Google Scholar

[24] T.F.Wen, J.P.Gao, J.Y.Shen, Z.S.Zhou: J. Mater. Sci.36 (2001) 5923. 10.1023/A:1012989012840Search in Google Scholar

[25] K.S.Hwang, B.H.Kim: J. Sol-Gel. Sci. Techn.14 (1999) 203. 10.1023/A:1008742218033Search in Google Scholar

[26] N.Negishi, K.Takeuchi: J. Sol-Gel. Sci. Techn.22 (2001) 23. 10.1023/A:1011204001482Search in Google Scholar

Received: 2009-8-14
Accepted: 2010-7-30
Published Online: 2013-05-31
Published in Print: 2010-10-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial October 2010
  5. History
  6. Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
  7. Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
  8. Basic
  9. Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
  10. Thermodynamic assessment of the Mn–Ni–O system
  11. Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
  12. In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
  13. Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
  14. Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
  15. Applied
  16. Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
  17. The role of talc in preparing steatite slurries suitable for spray-drying
  18. Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
  19. Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
  20. Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
  21. The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
  22. Preparation and photocatalytic properties of TiO2 film produced via spin coating
  23. DGM News
  24. Personal
Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110411/html
Scroll to top button