Startseite Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces

  • Riki Okamoto und John Ågren
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effects of physical parameters on the total dissipation of Gibbs energy inside migrating ferrite/austenite interfaces have been re-investigated using Odqvist's solute drag model. It is shown that the mobility of the ferrite/austenite phase interface and the diffusivity of niobium in the interface have a strong effect on the Gibbs energy dissipation. As the phase interface mobility was recently reassessed, it is clear that the Gibbs energy of niobium segregation and the diffusivity of niobium in the interface must also be reassessed. In this paper both parameters are reassessed in the Fe–C–Nb system using new physical parameters and experimental results from ultra-low carbon steels.


* Correspondence address, Riki Okamoto Steel Research Lab., Nippon Steel Corporation 20-1, Shintomi, Futtu-shi, Chiba-ken, 476-8686, Japan Tel.: +81 439 4126 Fax: +81 439 2743 E-mail:

References

[1] M.Suehiro, Z.-K.Liu, J.Ågren: Acta Metall.44 (1996) 4241.Suche in Google Scholar

[2] G.P.Krielaart, J.Sietsma, S.van der Zwaag: Mater. Sci. Eng. A237 (1997) 216. 10.1016/S0921-5093(97)00365-1Suche in Google Scholar

[3] J.J.Wits, T.A.Kop, Y.van Leeuwen, J.Seitsma, S.van del Zwaag: Mater. Sci. Eng. A283 (2000) 234. 10.1016/S0921-5093(00)00735-8Suche in Google Scholar

[4] M.Hillert, L.Höglund: Scr. Mater.54 (2006) 1259. 10.1016/j.scriptamat.2005.12.023Suche in Google Scholar

[5] E.Gamsjäger, M.Militzer, F.Fazeli, J.Svoboda, F.D.Fischer: Comp. Mater. Sci.37 (2006) 94. 10.1016/j.commatsci.2005.12.011Suche in Google Scholar

[6] E.Kozeschnik, E.Gamsjäger: Metall. Mater. Trans. A37 (2006) 1791.Suche in Google Scholar

[7] E.Gamsjäger: Mater. Sci. Forum (2007) 2570. 10.4028/www.scientific.net/MSF.539-543.2570Suche in Google Scholar

[8] N.Oono, H.Nitta, Y.Iijima: Mater. Trans.44 (2003) 2078. 10.2320/matertrans.44.2078Suche in Google Scholar

[9] J.Geise, C.Herzig: Z. Metallkde.76 (1985) 622.Suche in Google Scholar

[10] J.Odqvist, M.Hillert, J.Ågren: Acta Mater.50 (2002) 3211. 10.1016/S1359-6454(02)00143-XSuche in Google Scholar

[11] J.Odqvist, B.Sundman, J.Ågren: Acta Mater.51 (2003) 1035. 10.1016/S1359-6454(02)00507-4Suche in Google Scholar

[12] J.Odqvist, J.Ågren: International Forum for the properties and Application of IF steels, IF steels2003, Japan 325.Suche in Google Scholar

[13] J.-O.Andersson, J.Ågren: J. Appl. Phys.72 (1992) 1350. 10.1063/1.351745Suche in Google Scholar

[14] M.Hillert, B.Sundman: Acta. Metal.24 (1976) 731. 10.1016/0001-6160(76)90108-5Suche in Google Scholar

[15] J.Ågren: Acta Metall.37 (1989) 181. 10.1016/0001-6160(89)90277-0Suche in Google Scholar

[16] C.Zener: Trans. AIME167 (1946) 550.Suche in Google Scholar

[17] S.Crusius, G.Inden, U.Knoop, L.Höglund, J.Ågren: J. Z. Metallkd.83 (1992) 673.Suche in Google Scholar

[18] A.Borgenstam, A.Engström, L.Höglund, J.Ågren: J. Journal of Phase Equilibria21 (2000) 269. 10.1361/105497100770340057Suche in Google Scholar

[19] M.P.Puls, J.S.Kirkaldy: Metall. Trans.3 (1972) 2777. 10.1007/BF02652844Suche in Google Scholar

[20] M.Hillert: Met. Trans. A6 (1975) 5.10.1007/BF02673664Suche in Google Scholar

[21] J.Fridberg, L.-E.Törndahl, M.Hillert: Jernkont. Ann.153 (1969) 263.Suche in Google Scholar

[22] J.Ågren: Sci. Mater.20 (1986) 1507.10.1016/0036-9748(86)90384-4Suche in Google Scholar

[23] B.Jönsson: Z. Metallkd.85 (1994) 498.10.1515/ijmr-1994-850707Suche in Google Scholar

[24] Assessed from the data presented in Landholt Börnstein: (Impurity diffusion of Ni in bcc Fe) 26 (1990) ed. H. Mehrer:.Suche in Google Scholar

[25] Z.-K.Liu, J.Ågren: Acta. metal.37 (1989) 3157.Suche in Google Scholar

Received: 2009-8-12
Accepted: 2010-7-30
Published Online: 2013-05-31
Published in Print: 2010-10-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial October 2010
  5. History
  6. Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
  7. Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
  8. Basic
  9. Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
  10. Thermodynamic assessment of the Mn–Ni–O system
  11. Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
  12. In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
  13. Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
  14. Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
  15. Applied
  16. Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
  17. The role of talc in preparing steatite slurries suitable for spray-drying
  18. Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
  19. Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
  20. Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
  21. The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
  22. Preparation and photocatalytic properties of TiO2 film produced via spin coating
  23. DGM News
  24. Personal
Heruntergeladen am 20.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110413/html
Button zum nach oben scrollen