Home Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
Article
Licensed
Unlicensed Requires Authentication

Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces

  • Riki Okamoto and John Ågren
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The effects of physical parameters on the total dissipation of Gibbs energy inside migrating ferrite/austenite interfaces have been re-investigated using Odqvist's solute drag model. It is shown that the mobility of the ferrite/austenite phase interface and the diffusivity of niobium in the interface have a strong effect on the Gibbs energy dissipation. As the phase interface mobility was recently reassessed, it is clear that the Gibbs energy of niobium segregation and the diffusivity of niobium in the interface must also be reassessed. In this paper both parameters are reassessed in the Fe–C–Nb system using new physical parameters and experimental results from ultra-low carbon steels.


* Correspondence address, Riki Okamoto Steel Research Lab., Nippon Steel Corporation 20-1, Shintomi, Futtu-shi, Chiba-ken, 476-8686, Japan Tel.: +81 439 4126 Fax: +81 439 2743 E-mail:

References

[1] M.Suehiro, Z.-K.Liu, J.Ågren: Acta Metall.44 (1996) 4241.Search in Google Scholar

[2] G.P.Krielaart, J.Sietsma, S.van der Zwaag: Mater. Sci. Eng. A237 (1997) 216. 10.1016/S0921-5093(97)00365-1Search in Google Scholar

[3] J.J.Wits, T.A.Kop, Y.van Leeuwen, J.Seitsma, S.van del Zwaag: Mater. Sci. Eng. A283 (2000) 234. 10.1016/S0921-5093(00)00735-8Search in Google Scholar

[4] M.Hillert, L.Höglund: Scr. Mater.54 (2006) 1259. 10.1016/j.scriptamat.2005.12.023Search in Google Scholar

[5] E.Gamsjäger, M.Militzer, F.Fazeli, J.Svoboda, F.D.Fischer: Comp. Mater. Sci.37 (2006) 94. 10.1016/j.commatsci.2005.12.011Search in Google Scholar

[6] E.Kozeschnik, E.Gamsjäger: Metall. Mater. Trans. A37 (2006) 1791.Search in Google Scholar

[7] E.Gamsjäger: Mater. Sci. Forum (2007) 2570. 10.4028/www.scientific.net/MSF.539-543.2570Search in Google Scholar

[8] N.Oono, H.Nitta, Y.Iijima: Mater. Trans.44 (2003) 2078. 10.2320/matertrans.44.2078Search in Google Scholar

[9] J.Geise, C.Herzig: Z. Metallkde.76 (1985) 622.Search in Google Scholar

[10] J.Odqvist, M.Hillert, J.Ågren: Acta Mater.50 (2002) 3211. 10.1016/S1359-6454(02)00143-XSearch in Google Scholar

[11] J.Odqvist, B.Sundman, J.Ågren: Acta Mater.51 (2003) 1035. 10.1016/S1359-6454(02)00507-4Search in Google Scholar

[12] J.Odqvist, J.Ågren: International Forum for the properties and Application of IF steels, IF steels2003, Japan 325.Search in Google Scholar

[13] J.-O.Andersson, J.Ågren: J. Appl. Phys.72 (1992) 1350. 10.1063/1.351745Search in Google Scholar

[14] M.Hillert, B.Sundman: Acta. Metal.24 (1976) 731. 10.1016/0001-6160(76)90108-5Search in Google Scholar

[15] J.Ågren: Acta Metall.37 (1989) 181. 10.1016/0001-6160(89)90277-0Search in Google Scholar

[16] C.Zener: Trans. AIME167 (1946) 550.Search in Google Scholar

[17] S.Crusius, G.Inden, U.Knoop, L.Höglund, J.Ågren: J. Z. Metallkd.83 (1992) 673.Search in Google Scholar

[18] A.Borgenstam, A.Engström, L.Höglund, J.Ågren: J. Journal of Phase Equilibria21 (2000) 269. 10.1361/105497100770340057Search in Google Scholar

[19] M.P.Puls, J.S.Kirkaldy: Metall. Trans.3 (1972) 2777. 10.1007/BF02652844Search in Google Scholar

[20] M.Hillert: Met. Trans. A6 (1975) 5.10.1007/BF02673664Search in Google Scholar

[21] J.Fridberg, L.-E.Törndahl, M.Hillert: Jernkont. Ann.153 (1969) 263.Search in Google Scholar

[22] J.Ågren: Sci. Mater.20 (1986) 1507.10.1016/0036-9748(86)90384-4Search in Google Scholar

[23] B.Jönsson: Z. Metallkd.85 (1994) 498.10.1515/ijmr-1994-850707Search in Google Scholar

[24] Assessed from the data presented in Landholt Börnstein: (Impurity diffusion of Ni in bcc Fe) 26 (1990) ed. H. Mehrer:.Search in Google Scholar

[25] Z.-K.Liu, J.Ågren: Acta. metal.37 (1989) 3157.Search in Google Scholar

Received: 2009-8-12
Accepted: 2010-7-30
Published Online: 2013-05-31
Published in Print: 2010-10-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial October 2010
  5. History
  6. Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
  7. Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
  8. Basic
  9. Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
  10. Thermodynamic assessment of the Mn–Ni–O system
  11. Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
  12. In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
  13. Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
  14. Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
  15. Applied
  16. Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
  17. The role of talc in preparing steatite slurries suitable for spray-drying
  18. Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
  19. Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
  20. Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
  21. The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
  22. Preparation and photocatalytic properties of TiO2 film produced via spin coating
  23. DGM News
  24. Personal
Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110413/html
Scroll to top button