Thermodynamic assessment of the Mn–Ni–O system
-
Lina Kjellqvist
Abstract
Experimental data on thermodynamic properties and phase relations of the ternary Mn–Ni–O system were reviewed, and by use of the CALPHAD method, a consistent set of model parameters was optimised. The solid oxide phases were modelled using the compound energy formalism. The model allows representation of non-stoichiometry and solid solution in the phases. The distribution of cations between different lattice sites in the two spinel phases is also modelled. The liquid phase is described using the ionic two-sublattice model. The same model is used both for the metallic and the oxide liquid. Good agreement between calculated and experimental values is achieved.
References
[1] A.Petric, H.Ling: J. Am. Ceram. Soc.90 (2007) 1515. 10.1111/j.1551-2916.2007.01522.xSearch in Google Scholar
[2] L.Kjellqvist, M.Selleby, B.Sundman: Calphad32 (2008) 577. 10.1016/j.calphad.2008.04.005Search in Google Scholar
[3] L.Kjellqvist, M.Selleby: Calphad33 (2009) 393. 10.1016/j.calphad.2008.12.002Search in Google Scholar
[4] L.Kjellqvist, M.Selleby: J. Phase Equilib. Diffus.31 (2010) 113. 10.1007/s11669-009-9643-6Search in Google Scholar
[5] L.Kjellqvist, M.Selleby: Cr–Mn–O, J. Alloys Compd. (in press). 10.1016/j.jallcom.2010.04.252Search in Google Scholar
[6] A.Grundy, B.Hallstedt, L.Gauckler: J. Phase Equilib.24 (2003) 21. 10.1007/s11669-003-0004-6Search in Google Scholar
[7] J.Taylor, A.Dinsdale: Z. Metallkd.81 (1990) 354.Search in Google Scholar
[8] J.Miettinen: Calphad25 (2001) 43. 10.1016/S0364-5916(01)00029-3Search in Google Scholar
[9] C.Guo, Z.Du: Intermetallics13 (2005) 525. 10.1016/j.intermet.2004.09.002Search in Google Scholar
[10] P.Franke: Int. J. Mater. Res.98 (2007) 954. 10.3139/146.101558Search in Google Scholar
[11] B.Bergman, J.Ågren: J. Am. Ceram. Soc.68 (1985) 444. 10.1111/j.1151-2916.1985.tb10172.xSearch in Google Scholar
[12] S.-A.Cho, C.León-Sucré: J. Am. Ceram. Soc.65 (1982) 307. 10.1111/j.1151-2916.1982.tb10449.xSearch in Google Scholar
[13] M.Hillert, B.Jansson, B.Sundman, J.Ågren: Metall. Trans. A16 (1985) 261. 10.1007/BF02815307Search in Google Scholar
[14] B.Sundman: Calphad15 (1991) 109. 10.1016/0364-5916(91)90010-HSearch in Google Scholar
[15] M.Hillert: J. Alloys Compd.320 (2001) 161. 10.1016/S0925-8388(00)01481-XSearch in Google Scholar
[16] N.Saunders, A.Miodownik: Calphad (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon, Oxford (1998).Search in Google Scholar
[17] H.Lukas, S.Fries, B.Sundman: Computational Thermodynamics, The Calphad Method, Cambridge University Press, Cambridge (2007).10.1017/CBO9780511804137Search in Google Scholar
[18] H.Jahn, E.Teller: Proc. R. Soc. London A161 (1937) 220.Search in Google Scholar
[19] M.Hillert, L.Kjellqvist, H.Mao, M.Selleby, B.Sundman: Calphad33 (2009) 227. 10.1016/j.calphad.2008.05.006Search in Google Scholar
[20] S.Dorris, T.Mason: J. Am. Ceram. Soc.71 (1988) 379. 10.1111/j.1151-2916.1988.tb05057.xSearch in Google Scholar
[21] F.Driessens: Inorg. Chim. Acta.1 (1967) 193. 10.1016/S0020-1693(00)93169-4Search in Google Scholar
[22] D.McClure: J. Phys. Chem. Solids3 (1957) 311. 10.1016/0022-3697(57)90034-3Search in Google Scholar
[23] J.Dunitz, L.Orgel: J. Phys. Chem. Solids3 (1957) 318. 10.1016/0022-3697(57)90035-5Search in Google Scholar
[24] K.Irani, A.Sinha, A.Biswas: J. Phys. Chem. Solids17 (1960) 101. 10.1016/0022-3697(60)90181-5Search in Google Scholar
[25] G.Inden: Z. Metallkd.66 (1975) 577.10.1515/ijmr-1975-661003Search in Google Scholar
[26] M.Hillert, M.Jarl: Calphad2 (1978) 227. 10.1016/0364-5916(78)90011-1Search in Google Scholar
[27] D.Mehandjiev, E.Zhecheva, G.Ivanov, R.Ioncheva: Applied Catalysis A167 (1998) 277. 10.1016/S0926-860X(97)00312-8Search in Google Scholar
[28] A.Sinha, N.Sanjana, A.Biswas: Acta Cryst.10 (1957) 439. 10.1107/S0365110X57001450Search in Google Scholar
[29] L.Azaroff: Z. Krist.112 (1959) 33.10.2307/40097956Search in Google Scholar
[30] A.Meenakshisundaram, N.Gunasekaram, V.Srinivasan: Phys. Stat. Sol. A68 (1982) 15.Search in Google Scholar
[31] J.Töpfer, A.Feltz, D.Gräf, B.Hackl, L.Raupach, P.Weissbrodt: Phys. Stat. Sol. A134 (1992) 405.Search in Google Scholar
[32] B.Boucher, R.Buhl, M.Perrin: Acta Cryst. B25 (1969) 2326.Search in Google Scholar
[33] E.Larson, R.Arnott, D.Wickham: J. Phys. Chem. Solids.23 (1962) 1771. 10.1016/0022-3697(62)90216-0Search in Google Scholar
[34] E.Macklen: J. Phys. Chem. Solids47 (1986) 1073. 10.1016/0022-3697(86)90074-0Search in Google Scholar
[35] B.Gillot, J.Baudour, F.Bouree, R.Metz, R.Legros, A.Rousset: Solid State Ionics58 (1992) 155. 10.1016/0167-2738(92)90022-HSearch in Google Scholar
[36] V.Brabers, F.Van Setten, P.Knapen: J. Solid State Chem.49 (1983) 93. 10.1016/0022-4596(83)90220-7Search in Google Scholar
[37] M.Islam, C.Catlow: J. Phys. Chem. Solids49 (1988) 119. 10.1016/0022-3697(88)90040-6Search in Google Scholar
[38] J.Kulkarni, V.Darshane: Thermochimica Acta93 (1985) 473. 10.1016/0040-6031(85)85119-4Search in Google Scholar
[39] G.Bhandage, H.Keer: J. Phys. C7 (1974) 142.Search in Google Scholar
[40] J.Baudour, F.Bouree, M.Fremy, R.Legros, A.Rousset, B.Gillot: Physica B181 (1992) 97.Search in Google Scholar
[41] Y.Shen, T.Nakayama, M.Arai, O.Yanagisawa, M.Izumi: J. Phys. Chem. Solids63 (2002) 947. 10.1016/S0022-3697(02)00017-3Search in Google Scholar
[42] S.Åsbrink, A.Waskowska, M.Drozd, E.Talik: J. Phys. Chem. Solids58 (1998) 725. 10.1016/S0022-3697(96)00198-9Search in Google Scholar
[43] B.Boucher, R.Buhl, M.Perrin: J. Phys. Chem. Solids31 (1970) 363. 10.1016/0022-3697(70)90117-4Search in Google Scholar
[44] S.Åsbrink, A.Waskowska, J.Staun Olsen, L.Gerward: Phys. Rev. B57 (1998) 4972.Search in Google Scholar
[45] A.Navrotsky, O.Kleppa: J. Inorg. Nucl. Chem.30 (1968) 479.Search in Google Scholar
[46] D.Wickham: J. Inorg. Nucl. Chem.26 (1964) 1369.10.1016/0022-1902(64)80116-0Search in Google Scholar
[47] X.-X.Tang, A.Manthiram, J.Goodenough: J. Less-Common Met.156 (1989) 357.Search in Google Scholar
[48] J.Jung, J.Töpfer, A.Feltz: J. Thermal Anal.36 (1990) 1505.Search in Google Scholar
[49] V.Balakirev, V.Barkhatov, A.Bobov, Y.V.Golikov, A.Zalazinsky, G.Chufarov: Metallurgy of Manganese, Nauka, Moscow, (1980).Search in Google Scholar
[50] G.Popov, S.Strokatova: Chemistry and chemical technology (1971) 414.Search in Google Scholar
[51] Y.Golikov, V.Balakirev: J. Phys. Chem. Solids49 (1988) 329. 10.1016/0022-3697(88)90087-XSearch in Google Scholar
[52] D.Cameron, A.Unger: Metall. Trans.1 (1970) 2615. 10.1007/BF03038393Search in Google Scholar
[53] H.Paulsson, E.Rosén: Chem. Scr.11 (1977) 204.Search in Google Scholar
[54] S.Seetharaman, K.Abraham: Trans. Inst. Min. Metall. C77 (1968) 209.Search in Google Scholar
[55] W.Hahn, A.Muan: J. Phys. Chem. Solids19 (1961) 338. 10.1016/0022-3697(61)90044-0Search in Google Scholar
[56] C.Catlow, B.Fender, P.Hampson: J. Chem. Soc., Faraday Trans.73 (1977) 911.10.1039/f29777300911Search in Google Scholar
[57] S.Labus, G.Rog: Ann. Soc. Chim. Poly.49 (1975) 339.Search in Google Scholar
[58] J.-O.Andersson, T.Helander, L.Höglund, P.Shi, B.Sundman: Calphad26 (2002) 273. 10.1016/S0364-5916(02)00037-8Search in Google Scholar
[59] A.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-NSearch in Google Scholar
[60] B.Bastow, I.Palmer, D.Whittle, G.Wood: Oxidation of Metals18 (1982) 295. 10.1007/BF00656573Search in Google Scholar
[61] H.Mao, M.Hillert, M.Selleby, B.Sundman: J. Am. Ceram. Soc.89 (2006) 298. 10.1111/j.1551-2916.2005.00698.xSearch in Google Scholar
[62] H.Mao, O.Fabrichnaya, M.Selleby, B.Sundman: J. Mater. Res.20 (2005) 975. 10.1557/JMR.2005.0123Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal