Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
-
Ashkan Nouri
, Hasan Saghafian and Shahram Kheirandish
Abstract
Two low carbon steels with the same manganese content (approximately 1.6 wt.%) but different silicon contents (0.34 and 2.26 wt.%) with the initial microstructures consisting of ferrite and pearlite were intercritically annealed at five different temperatures followed by water quenching to obtain dual-phase microstructures. The modified Crussard–Jaoul analysis was employed to describe the work hardening behaviour of the dual-phase steels. Both steels exhibited two stages of work hardening in the range of plastic deformation. It is shown that for each stage the work hardening exponent is not constant and varies with volume fraction of martensite and silicon content. The dependence of the transition stress σk and strain ∊k of dual-phase steels on the annealing temperature is discussed for both steels. It is concluded that ∊k increases with increasing silicon content and decreases with annealing temperature, while the reverse is true for σk.
References
[1] M.S.Rashid, in: A.T.Davenport (Ed.), (Formable HSLA and Dual Phase Steels), TMS-AIME, New York (1979) 1.Search in Google Scholar
[2] M.Sarwar, R.Priestner: J. Mater. Sci.31 (1996) 2091. 10.1007/BF00356631Search in Google Scholar
[3] G.R.Speich, R.L.Miller, in: R.A.Kot, J.W.Morris (Eds.), (Structure and Properties of Dual-Phase Steel), TMS-AIME, New York (1979) 19.Search in Google Scholar
[4] H.J.Klaar, I.A.El-Sesy, A.H.Hussein: Steel Res.61 (1990) 85.Search in Google Scholar
[5] J.H.Hollomon: Trans. AIME162 (1945) 268.Search in Google Scholar
[6] P.Ludwick: Julius Springer, Berlin (1909) 32.Search in Google Scholar
[7] H.W.Swift: J. Mech. Phys. Solids1 (1952) 1. 10.1016/0022-5096(52)90002-1Search in Google Scholar
[8] E.Voce: J. Inst. Met.74 (1978) 537.10.1378/chest.74.5.537Search in Google Scholar
[9] C.Crussard: Rev. Metall.50 (1953) 697.10.1051/metal/195350100697Search in Google Scholar
[10] B.Jaoul: J. Mech. Phys. Solids5 (1957) 95. 10.1016/0022-5096(57)90054-6Search in Google Scholar
[11] R.E.Reed-Hill, W.R.Cribb, S.N.Monterio: Metall. Trans. A4 (1973) 2665.Search in Google Scholar
[12] Y.Tomita, K.Okabayashi: Metall. Trans. A16 (1985) 865.Search in Google Scholar
[13] J.Lian, Z.Jiang, J.Liu,: Mater. Sci. Eng. A147 (1991) 55. 10.1016/0921-5093(91)90804-VSearch in Google Scholar
[14] F.H.Samuel: Mater. Sci. Eng.92 (1987) L5. 10.1016/0025-5416(87)90180-7Search in Google Scholar
[15] F.H.Samuel: Mater. Sci. Eng.92 (1987) L1. 10.1016/0025-5416(87)90179-0Search in Google Scholar
[16] M.M.Karimi, Sh.Kheirandish: Steel Res.48 (2009) 160.Search in Google Scholar
[17] D.K.Mondal, R.K.Ray: Steel Res.60 (1989) 25.Search in Google Scholar
[18] T.Hüper, S.Endo, N.Ishikawa, K.Osawa: ISIJ Int.39 (1999) 288. 10.2355/isijinternational.39.288Search in Google Scholar
[19] D.K.Mondal, R.M.Dey: Mater. Sci. Eng. A149 (1992) 173. 10.1016/0921-5093(92)90378-ESearch in Google Scholar
[20] W.R.Cribb, M.Rigsbe, in: R.A.Kot, J.W.Morris (Eds.), (Structure and Properties of Dual-Phase Steels), TMS-AIME, New York (1979) 91.Search in Google Scholar
[21] D.K.Matlock, G.Krauss, L.F.Ramos, G.S.Huppi, in: R.A.Kot, J.W.Morris (Eds.), (Structure and Properties of Dual-Phase Steels), TMS-AIME, New York (1979) 62.Search in Google Scholar
[22] D.A.Korzekwa, D.K.Matlock, G.Krauss: Metall. Trans. A15 (1984) 1221.Search in Google Scholar
[23] M.S.Nagorka, G.Krauss, D.K.Matlock: Mater. Sci. Eng.94 (1987) 183. 10.1016/0025-5416(87)90332-6Search in Google Scholar
[24] R.D.Lawson, D.K.Matlock, G.Krauss, in: R.A.Kot, B.L.Bramfitt (Eds.), (Fundamentals of Dual Phase Steel), TMS-AIME, New York (1979) 347.Search in Google Scholar
[25] Z.Jiang, J.Lian, J.Chen: Mater. Sci. Tech.8 (1992) 1075.Search in Google Scholar
[26] Z.Jiang, Z.Guanand, J.Lian: J. Mater. Sci.28 (1993) 1814. 10.1007/BF00595750Search in Google Scholar
[27] H.Paruz, D.V.Edmonds: Mate. Sci Eng. A117 (1989) 67. 10.1016/0921-5093(89)90087-7Search in Google Scholar
[28] Z.Jiang, Z.Guan, J.Lian: Mater. Sci. Eng. A190 (1995) 55. 10.1016/0921-5093(94)09594-MSearch in Google Scholar
[29] L.F.Ramos, D.K.Matlock, G.Krauss: Metall. Trans. A10 (1979) 259.Search in Google Scholar
[30] K.T.Park, S.Y.Han, B.D.Ahn, D.H.Shin, Y.K.Lee, K.K.Um: Scr. Mater.51 (2004) 909. 10.1016/j.scriptamat.2004.06.017Search in Google Scholar
[31] D.A.Burford, D.K.Matlock, G.Krauss, Proc. 7th Int. Conf. (Strength of Metals and Alloys), Pergamon, Oxford (1986) 189.10.1016/B978-0-08-031642-0.50039-8Search in Google Scholar
[32] A.M.Sarosiek, W.S.Owen: Mater. Sci. Eng.66 (1984) 13. 10.1016/0025-5416(84)90138-1Search in Google Scholar
[33] F.M.Al-Abbasi, J.A.Nemes: Int. J. Mech. Sci.45 (2003) 1449. 10.1016/j.ijmecsci.2003.10.007Search in Google Scholar
[34] U.Liedl, S.Traint, E.A.Werner: Comp. Mater. Sci.25 (2002) 122. 10.1016/S0927-0256(02)00256-2Search in Google Scholar
[35] R.G.Davies, C.L.Magee, in: R.A.Kot, J.W.Morris (Eds.), (Structure and Properties of Dual-Phase Steels), TMS-AIME, New York (1979) 2.Search in Google Scholar
[36] D.K.Matlock, F.Zia-Ebrahimi, G.Krauss, in: G.Krauss (Ed.), (Deformation, Processing and Structure), TMS-AIME, New York (1984) 47.Search in Google Scholar
[37] A.Nouri, Sh.Kheirandish, H.Saghafian: Iranian J. Mater. Sci. Eng.5 (2008) 40.Search in Google Scholar
[38] C.I.Garcia, A.J.DeArdo: Metall. Trans. A12 (1981) 521.Search in Google Scholar
[39] K.W.Andrews: J. Iron steel Inst.203 (1965) 721.Search in Google Scholar
[40] A.Nouri, H.Saghafian, Sh.Kheirandish: J. Iron and Steel Res. International, Article in Press.Search in Google Scholar
[41] M.H.Saleh, R.Priestner: J. Mater. Process. Tech.113 (2001) 587. 10.1016/S0924-0136(01)00638-0Search in Google Scholar
[42] M.Erdogan, R.Pristner: Mater. Sci. Tech.15 (1999) 1273.Search in Google Scholar
[43] A.M.Sarosiek, W.S.Owen: Scr. Metall.17 (1983) 227. 10.1016/0036-9748(83)90103-5Search in Google Scholar
[44] N.P.Allen, in: C.W.Spencer, F.E.Werner (Eds.), (Iron and its Dilute Solid Solutions), Interscience, New York (1963) 271.Search in Google Scholar
[45] R.G.Davies: Metall. Trans. A10 (1979) 113.10.1007/978-1-4684-8613-1_8Search in Google Scholar
[46] K.Miura, S.Takagi, T.Hira, O.Furukimi: SAE Paper980952 (1998) 23.Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal