Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
-
Ashkan Nouri
, Hasan Saghafian und Shahram Kheirandish
Abstract
Two low carbon steels with the same manganese content (approximately 1.6 wt.%) but different silicon contents (0.34 and 2.26 wt.%) with the initial microstructures consisting of ferrite and pearlite were intercritically annealed at five different temperatures followed by water quenching to obtain dual-phase microstructures. The modified Crussard–Jaoul analysis was employed to describe the work hardening behaviour of the dual-phase steels. Both steels exhibited two stages of work hardening in the range of plastic deformation. It is shown that for each stage the work hardening exponent is not constant and varies with volume fraction of martensite and silicon content. The dependence of the transition stress σk and strain ∊k of dual-phase steels on the annealing temperature is discussed for both steels. It is concluded that ∊k increases with increasing silicon content and decreases with annealing temperature, while the reverse is true for σk.
References
[1] M.S.Rashid, in: A.T.Davenport (Ed.), (Formable HSLA and Dual Phase Steels), TMS-AIME, New York (1979) 1.Suche in Google Scholar
[2] M.Sarwar, R.Priestner: J. Mater. Sci.31 (1996) 2091. 10.1007/BF00356631Suche in Google Scholar
[3] G.R.Speich, R.L.Miller, in: R.A.Kot, J.W.Morris (Eds.), (Structure and Properties of Dual-Phase Steel), TMS-AIME, New York (1979) 19.Suche in Google Scholar
[4] H.J.Klaar, I.A.El-Sesy, A.H.Hussein: Steel Res.61 (1990) 85.Suche in Google Scholar
[5] J.H.Hollomon: Trans. AIME162 (1945) 268.Suche in Google Scholar
[6] P.Ludwick: Julius Springer, Berlin (1909) 32.Suche in Google Scholar
[7] H.W.Swift: J. Mech. Phys. Solids1 (1952) 1. 10.1016/0022-5096(52)90002-1Suche in Google Scholar
[8] E.Voce: J. Inst. Met.74 (1978) 537.10.1378/chest.74.5.537Suche in Google Scholar
[9] C.Crussard: Rev. Metall.50 (1953) 697.10.1051/metal/195350100697Suche in Google Scholar
[10] B.Jaoul: J. Mech. Phys. Solids5 (1957) 95. 10.1016/0022-5096(57)90054-6Suche in Google Scholar
[11] R.E.Reed-Hill, W.R.Cribb, S.N.Monterio: Metall. Trans. A4 (1973) 2665.Suche in Google Scholar
[12] Y.Tomita, K.Okabayashi: Metall. Trans. A16 (1985) 865.Suche in Google Scholar
[13] J.Lian, Z.Jiang, J.Liu,: Mater. Sci. Eng. A147 (1991) 55. 10.1016/0921-5093(91)90804-VSuche in Google Scholar
[14] F.H.Samuel: Mater. Sci. Eng.92 (1987) L5. 10.1016/0025-5416(87)90180-7Suche in Google Scholar
[15] F.H.Samuel: Mater. Sci. Eng.92 (1987) L1. 10.1016/0025-5416(87)90179-0Suche in Google Scholar
[16] M.M.Karimi, Sh.Kheirandish: Steel Res.48 (2009) 160.Suche in Google Scholar
[17] D.K.Mondal, R.K.Ray: Steel Res.60 (1989) 25.Suche in Google Scholar
[18] T.Hüper, S.Endo, N.Ishikawa, K.Osawa: ISIJ Int.39 (1999) 288. 10.2355/isijinternational.39.288Suche in Google Scholar
[19] D.K.Mondal, R.M.Dey: Mater. Sci. Eng. A149 (1992) 173. 10.1016/0921-5093(92)90378-ESuche in Google Scholar
[20] W.R.Cribb, M.Rigsbe, in: R.A.Kot, J.W.Morris (Eds.), (Structure and Properties of Dual-Phase Steels), TMS-AIME, New York (1979) 91.Suche in Google Scholar
[21] D.K.Matlock, G.Krauss, L.F.Ramos, G.S.Huppi, in: R.A.Kot, J.W.Morris (Eds.), (Structure and Properties of Dual-Phase Steels), TMS-AIME, New York (1979) 62.Suche in Google Scholar
[22] D.A.Korzekwa, D.K.Matlock, G.Krauss: Metall. Trans. A15 (1984) 1221.Suche in Google Scholar
[23] M.S.Nagorka, G.Krauss, D.K.Matlock: Mater. Sci. Eng.94 (1987) 183. 10.1016/0025-5416(87)90332-6Suche in Google Scholar
[24] R.D.Lawson, D.K.Matlock, G.Krauss, in: R.A.Kot, B.L.Bramfitt (Eds.), (Fundamentals of Dual Phase Steel), TMS-AIME, New York (1979) 347.Suche in Google Scholar
[25] Z.Jiang, J.Lian, J.Chen: Mater. Sci. Tech.8 (1992) 1075.Suche in Google Scholar
[26] Z.Jiang, Z.Guanand, J.Lian: J. Mater. Sci.28 (1993) 1814. 10.1007/BF00595750Suche in Google Scholar
[27] H.Paruz, D.V.Edmonds: Mate. Sci Eng. A117 (1989) 67. 10.1016/0921-5093(89)90087-7Suche in Google Scholar
[28] Z.Jiang, Z.Guan, J.Lian: Mater. Sci. Eng. A190 (1995) 55. 10.1016/0921-5093(94)09594-MSuche in Google Scholar
[29] L.F.Ramos, D.K.Matlock, G.Krauss: Metall. Trans. A10 (1979) 259.Suche in Google Scholar
[30] K.T.Park, S.Y.Han, B.D.Ahn, D.H.Shin, Y.K.Lee, K.K.Um: Scr. Mater.51 (2004) 909. 10.1016/j.scriptamat.2004.06.017Suche in Google Scholar
[31] D.A.Burford, D.K.Matlock, G.Krauss, Proc. 7th Int. Conf. (Strength of Metals and Alloys), Pergamon, Oxford (1986) 189.10.1016/B978-0-08-031642-0.50039-8Suche in Google Scholar
[32] A.M.Sarosiek, W.S.Owen: Mater. Sci. Eng.66 (1984) 13. 10.1016/0025-5416(84)90138-1Suche in Google Scholar
[33] F.M.Al-Abbasi, J.A.Nemes: Int. J. Mech. Sci.45 (2003) 1449. 10.1016/j.ijmecsci.2003.10.007Suche in Google Scholar
[34] U.Liedl, S.Traint, E.A.Werner: Comp. Mater. Sci.25 (2002) 122. 10.1016/S0927-0256(02)00256-2Suche in Google Scholar
[35] R.G.Davies, C.L.Magee, in: R.A.Kot, J.W.Morris (Eds.), (Structure and Properties of Dual-Phase Steels), TMS-AIME, New York (1979) 2.Suche in Google Scholar
[36] D.K.Matlock, F.Zia-Ebrahimi, G.Krauss, in: G.Krauss (Ed.), (Deformation, Processing and Structure), TMS-AIME, New York (1984) 47.Suche in Google Scholar
[37] A.Nouri, Sh.Kheirandish, H.Saghafian: Iranian J. Mater. Sci. Eng.5 (2008) 40.Suche in Google Scholar
[38] C.I.Garcia, A.J.DeArdo: Metall. Trans. A12 (1981) 521.Suche in Google Scholar
[39] K.W.Andrews: J. Iron steel Inst.203 (1965) 721.Suche in Google Scholar
[40] A.Nouri, H.Saghafian, Sh.Kheirandish: J. Iron and Steel Res. International, Article in Press.Suche in Google Scholar
[41] M.H.Saleh, R.Priestner: J. Mater. Process. Tech.113 (2001) 587. 10.1016/S0924-0136(01)00638-0Suche in Google Scholar
[42] M.Erdogan, R.Pristner: Mater. Sci. Tech.15 (1999) 1273.Suche in Google Scholar
[43] A.M.Sarosiek, W.S.Owen: Scr. Metall.17 (1983) 227. 10.1016/0036-9748(83)90103-5Suche in Google Scholar
[44] N.P.Allen, in: C.W.Spencer, F.E.Werner (Eds.), (Iron and its Dilute Solid Solutions), Interscience, New York (1963) 271.Suche in Google Scholar
[45] R.G.Davies: Metall. Trans. A10 (1979) 113.10.1007/978-1-4684-8613-1_8Suche in Google Scholar
[46] K.Miura, S.Takagi, T.Hira, O.Furukimi: SAE Paper980952 (1998) 23.Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal