Home The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
Article
Licensed
Unlicensed Requires Authentication

The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn

  • Y. Fartushna , K. Meleshevich , A. Samelyuk and M. Bulanova
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

Phase equilibria in the Ti–Dy–Sn system below 40 at.% Sn were studied using differential thermal analysis, X-ray diffraction, metallography and electron microprobe. The partial liquidus and solidus projections and the melting diagram (liquidus + solidus) were constructed. A new ternary compound τ with composition Ti4.2–4.3Dy0.8–0.7Sn≲3, found by us previously, melts congruently above 1 543 °C and coexists with all the phases based on the binary compounds of the boundary binaries in the concentration interval studied.

The liquidus surface is characterized by primary crystallization regions of (βTi), (βDy), (αDy), (Ti3Sn), (Ti2Sn), (Ti5Sn3), (Dy5Sn3) and τ. Five three-phase fields in the solidus surface result from three eutectic and two transition type invariant four-phase equilibria: LE1 ⇄ (βTi) + (Ti3Sn) + (Dy5Sn3), LE2 ⇄ (Ti3Sn) + τ + (Dy5Sn3), LE3 ⇄ (βTi) + (αDy) + (Dy5Sn3), LU1 + (Ti2Sn) ⇄ (Ti3Sn) + τ and LU2 + (Ti2Sn) ⇄ (Ti5Sn3) + τ at 1 524, 1 500, 1 150, 1 543 and 1 498 °C, respectively.

In the two-phase areas (βTi) + (Dy5Sn3), (Ti3Sn) + (Dy5Sn3), (Ti2Sn) + τ and τ + (Dy5Sn3) the solidus surface has the temperature maxima at 1 620, 1 540, > 1 543 and > 1 500 °C, respectively.


* Correspondence address, Ms. Yulia Fartushna I. N. Frantsevich Institute for Problems of Materials Science of NASU 3 Krzhizhanovsky Str., 03142 Kiev, Ukraine Tel.: +380 44 424 30 90 Fax: +380 44 424 21 31 E-mail:

References

[1] M.V.Bulanova, Y.N.Podrezov, Y.V.Fartushnaya, K.A.Meleshevich, A.V.Samelyuk, S.A.Firstov: Dokl. Nats. Akad. Nauk Ukr.4 (2005) 86.Search in Google Scholar

[2] M.Bulanova, Y.Podrezov, Y.Fartushna: Intermetallics14 (2006) 435. 10.1016/j.intermet.2005.08.004Search in Google Scholar

[3] Y.V.Fartushna, A.V.Kotko, A.V.Samelyuk, Y.N.Podrezov, M.V.Bulanova: High Temp. Mater. Proces.25 (2006) 67.Search in Google Scholar

[4] Y.V.Fartushna, A.V.Kotko, M.V.Bulanova: Chemistry Metals Alloys2 (2009) 83.Search in Google Scholar

[5] M.Bulanova, Y.Podrezov, Y.Fartushnaya, K.A.Meleshevich, A.V.Samelyuk, S.A.Firstov: Dokl. Nats. Akad. Nauk Ukr.12 (2004) 87.Search in Google Scholar

[6] M.V.Bulanova, Y.N.Podrezov, Y.V.Fartushna, R.A.Danilyuk, R.A.Meleshevich: Teor. prakt. metal.4–5 (2006) 4.Search in Google Scholar

[7] M.V.Bulanova, Y.N.Podrezov, Y.V.Fartushna, A.N.Rafal, S.A.Firstov: Dokl. Nats. Akad. Nauk Ukr.6 (2007) 95.Search in Google Scholar

[8] M.Bulanova, Y.Podrezov, Y.Fartushnaya, K.Meleshevich, A.Samelyuk: J. Alloys Compds.370 (2004) L10. 10.1016/j.jallcom.2003.09.016Search in Google Scholar

[9] F.Yin, J.C.Tedenac, F.Gascoin: Calphad31 (2007) 370. 10.1016/j.calphad.2007.01.003Search in Google Scholar

[10] V.A.Saltykov, K.A.Meleshevich, A.V.Samelyuk, M.V.Bulanova, J.C.Tedenac: J.Alloys Compds.473 (2009) 341. 10.1016/j.jallcom.2008.05.085Search in Google Scholar

[11] T.B.Massalski: Binary Alloy Phase Diagrams, 2nd Edition, ASM International, Metals Park, OH (1990).Search in Google Scholar

[12] V.N.Eremenko, M.V.Bulanova, P.S.Martsenjuk: J. Alloys Compds.189 (1992) 229. 10.1016/0925-8388(92)90712-ISearch in Google Scholar

[13] A.Palenzona, P.Manfrinetti: J. Alloys Compds.201 (1993) 43. 10.1016/0925-8388(93)90859-LSearch in Google Scholar

[14] G.Venturini, A.Mesbah: J. Alloys Compds.458 (2008) 23. 10.1016/j.jallcom.2007.03.141Search in Google Scholar

[15] H.W.King: Bull. Alloy Phase Diagr.2 (1981) 401. 10.1007/BF02868307Search in Google Scholar

[16] K.A.Gschneidner: Bull. Alloy Phase Diagr.11 (1990) 216. 10.1007/BF03029283Search in Google Scholar

[17] P.Rogl: Titanium: Physico-chemical Properties of its Compounds and Alloys, IAEA, Vienna (1983).Search in Google Scholar

[18] M.Bulanova, Y.Podrezov, Y.FartushnayaA.N.Rafal, S.A.Firstov: Dokl. Nats. Akad. Nauk Ukr.11 (2006) 101.Search in Google Scholar

[19] H.Nowotny, H.Auer-Welsbach, J.Bruss, A.Kohl: Monatsh. Chem.90 (1959) 15. 10.1007/BF00901126Search in Google Scholar

[20] A.Palenzona, F.Merlo: Atti Accad. Naz. Lincei, Rend. Fis., Mat. Nat.40 (1966) 617.Search in Google Scholar

[21] W.Jeitchko, E.Parthe: Acta Crystallogr.22 (1967) 551. 10.1107/S0365110X67001112Search in Google Scholar

[22] A.Iandelli, A.Palenzona, in: K.Gschneidner, L.Eyring (Ed.), Handbook of the physics and chemistry of rare earth, North Holland Publishing Company, Amsterdam2 (1982) 1.Search in Google Scholar

Received: 2009-6-24
Accepted: 2010-7-30
Published Online: 2013-05-31
Published in Print: 2010-10-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial October 2010
  5. History
  6. Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
  7. Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
  8. Basic
  9. Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
  10. Thermodynamic assessment of the Mn–Ni–O system
  11. Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
  12. In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
  13. Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
  14. Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
  15. Applied
  16. Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
  17. The role of talc in preparing steatite slurries suitable for spray-drying
  18. Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
  19. Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
  20. Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
  21. The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
  22. Preparation and photocatalytic properties of TiO2 film produced via spin coating
  23. DGM News
  24. Personal
Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110408/html
Scroll to top button