Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
-
Arturo Domínguez-Rodríguez
, Diego Gómez-García , Miguel Castillo-Rodríguez , Eugenio Zapata-Solvas und Rachman Chaim
Abstract
Superplasticity in ceramics has been the subject of intense research activity for the last two decades. Quite recently, the fabrication of fully dense nanocrystalline oxides with grain size below 100 nm enabled examination of their superplastic behaviour. This work presents a critical analysis of the plasticity of two important nanostructured oxide systems: MgO and yttria tetragonal zirconia polycrystals. A thorough comparison of their plastic deformation reveals that nano-structuring may be a necessary, but not a sufficient condition for superplasticity in ceramics as commonly assumed. Instead, the changes in the chemical composition and the transport properties, through the bulk and at grain boundaries, versus temperature and grain size can induce a rich variety of mechanical responses.
References
[1] F.Wakai, S.Sakaguchi, Y.Matsuno: Adv. Ceram. Mater.1 (1986) 259–263.10.1111/j.1551-2916.1986.tb00026.xSuche in Google Scholar
[2] B.N.Kim, K.Hiraga, K.Morita, Y.Sakka: Nature413 (2001) 288–291. 11565026; 10.1038/35095025Suche in Google Scholar
[3] A.Domínguez-RodríguezD.Gómez-Garcí, E.Zapata, Z.Shen, R.Chaim: Scripta Mater.56 (2007) 89–91. 10.1016/j.scriptamat.2006.09.024Suche in Google Scholar
[4] T.G.Nieh, J.Wadsworth: Mater. Sci. Forum170-172 (1994) 359–368. 10.4028/www.scientific.net/MSF.170-172.359Suche in Google Scholar
[5] R.Kahandal, K.Yasui: Mater. Sci. Forum243-245 (1997) 687–694. 10.4028/www.scientific.net/MSF.243-245.687Suche in Google Scholar
[6] J.Ye, A.Domínguez-Rodríguez: Scripta Met. Mater.33 (1995) 441–445. 10.1016/0956-716X(95)00206-BSuche in Google Scholar
[7] A.Domínguez-Rodríguez, F.Guiberteau, M.Jimenez-Melendo: J. Mater. Res.39 (1998) 1631–1636. 10.1557/JMR.1998.0224Suche in Google Scholar
[8] F.Gutiérrez-MoraA.Domínguez-Rodríguez, J.L.Routbort, R.Chaim, F.Guiberteau: Scripta Mater.41 (1990) 455–460. 10.1016/S1359-6462(99)00190-6Suche in Google Scholar
[9] K.C.Goretta, F.Gutiérrez-Mora, J.J.Picciolo, J.L.Routbort: Mater. Sci. Eng. A341 (2003) 158–162. 10.1016/S0921-5093(02)00212-5Suche in Google Scholar
[10] D.G.Morris: (Mechanical behaviour of nanostructured materials) (1998) Trans Tech Pub. Ltd, Switzerland, vol. 2 of Mater. Sci. Foundations.10.4028/www.scientific.net/MSFo.2Suche in Google Scholar
[11] M.A.Meyers, A.Mishra, D.J.Benson: (Mechanical properties of nanocrystalline materials), Prog. Mater. Sci.51 (2006) 427–556. 10.1016/j.pmatsci.2005.08.003Suche in Google Scholar
[12] F.Gutierrez-Mora, D.Gómez-Garcí, M.Jímenez-Melendo, A.Domínguez-Rodríguez, R.Chaim: J. Amer. Ceram. Soc.88 (2005) 1529–1535. 10.1111/j.1551-2916.2005.00305.xSuche in Google Scholar
[13] R.B.Day, R.J.Stockes: J. Am. Ceram. Soc.49 (1966) 345–354. 10.1111/j.1151-2916.1966.tb13282.xSuche in Google Scholar
[14] T.E.Langdon, J.A.Pask: J. Am. Ceram. Soc.54 (1971) 240–246. 10.1111/j.1151-2916.1971.tb12280.xSuche in Google Scholar
[15] W.E.Snowden, J.A.Pask: Phil. Mag.29 (1974) 441–455. 10.1080/14786437408213231Suche in Google Scholar
[16] J.M.Birch, B.Wilshire: J. Mater. Sci.9 (1974) 794–800. 10.1007/BF00761799Suche in Google Scholar
[17] J.Crampon, B.Escaig: J. Mater. Sci.13 (1978) 2619–2626. 10.1007/BF02402748Suche in Google Scholar
[18] J.Crampon, B.Escaig: J. Am. Ceram. Soc.63 (1980) 680–686. 10.1111/j.1151-2916.1980.tb09860.xSuche in Google Scholar
[19] J.Crampon: Acta Metall.28 (1980) 123–128. 10.1016/0001-6160(80)90045-0Suche in Google Scholar
[20] T.Zisner, H.Tagai: J. Am. Ceram. Soc.51 (1968) 310–314. 10.1111/j.1151-2916.1968.tb15944.xSuche in Google Scholar
[21] Y.M.Chiang, A.F.Henriksen, W.D.Kingery, D.Finello: J. Am. Ceram. Soc.64 (1981) 385–389. 10.1111/j.1151-2916.1981.tb09875.xSuche in Google Scholar
[22] H.Conrad, D.Yang: Acta Mater.48 (2000) 4045–4052. 10.1016/S1359-6454(00)00203-2Suche in Google Scholar
[23] H.Conrad: Scripta Mater.44 (2001) 311–316. 10.1016/S1359-6462(00)00589-3Suche in Google Scholar
[24] A.H.Chokshi, A.K.Mukherjee, T.G.Langdon: Mater. Sci. Eng.R10 (1993) 237–274.10.1016/0927-796X(93)90009-RSuche in Google Scholar
[25] M.Jiménez-MelendoA.Domínguez-Rodríguez, A.Bravo-Leyón: J. Am. Ceram. Soc.81 (1998) 2761–2776. 10.1111/j.1151-2916.1998.tb02695.xSuche in Google Scholar
[26] M.Jiménez-MelendoA.Domínguez-Rodríguez: Acta Mater.48 (2000) 3201–3212. 10.1016/S1359-6454(00)00113-0Suche in Google Scholar
[27] A.Domínguez-RodríguezA.Bravo-León, J.D.Ye, M.Jimenez-Melendo: Mater. Sci. Eng. A247 (1998) 97–101. 10.1016/S0921-5093(97)00837-XSuche in Google Scholar
[28] B.J.Wuensch, T.Vasilos: J. Am. Ceram. Soc.49 (1966) 433–436. 10.1111/j.1151-2916.1966.tb15411.xSuche in Google Scholar
[29] F.Gutiérrez-MoraA.Domínguez-Rodríguez, M.Jiménez-Melendo, R.Chaim, M.Hefetz: Nanostruc. Mater.11 (1999) 531–537. 10.1016/S0965-9773(99)00339-6Suche in Google Scholar
[30] K.Morita, K.Hiraga: Acta Mater.50 (2002) 1075–1085. 10.1016/S1359-6454(01)00407-4Suche in Google Scholar
[31] N.Balasubramanian, T.G.Langdon: Mater. Sci. Eng. A409 (2005) 46–51. 10.1016/j.msea.2005.06.071Suche in Google Scholar
[32] C.Garcí-Ganán, J.J.Meléndez-Martinez, D.Gómez-Garcí, A.Domínguez-Rodríguez: J. Mater. Sci.41 (2006) 5231–5234. 10.1007/s10853-006-0433-9Suche in Google Scholar
[33] G.S.A.M.Theunissen, A.J.A.Winnubst, A.J.Burggraaf: J. Mater. Sci.27 (1992) 5057–5066. 10.1007/BF01105274Suche in Google Scholar
[34] A.E.Highes, S.P.S.Badwal: Solid State Ionics40/41 (1990) 312–315. 10.1016/0167-2738(90)90348-USuche in Google Scholar
[35] A.E.Highes, S.P.S.Badwal: Solid State Ionics46 (1991) 265–274. 10.1016/0167-2738(91)90225-ZSuche in Google Scholar
[36] A.E.Highes, B.A.Sexton: Solid State Ionics24 (1989) 1057–1061.Suche in Google Scholar
[37] S.L.Hwang, I.W.Chen: J. Am. Ceram. Soc.73 (1990) 3269–3277. 10.1111/j.1151-2916.1990.tb06449.xSuche in Google Scholar
[38] J.S.Lee, D.Y.Kim: J. Mater. Res.16 (2001) 2739–2751. 10.1557/JMR.2001.0374Suche in Google Scholar
[39] Y.Lei, N.D.Browning, T.J.Mazanec: J. Am. Ceram. Soc.85 (2002) 2359–2363. 10.1111/j.1151-2916.2002.tb00460.xSuche in Google Scholar
[40] X.Guo, Z.Zhang: Acta Mater.51 (2003) 2539–2547. 10.1016/S1359-6454(03)00052-1Suche in Google Scholar
[41] D.Gómez-Garcí, C.Lorenzo-Martín, A.Muñoz-Bernabé, A.Domínguez-Rodríguez: Phys. Rev. B67 (2003) 144101–7. 10.1103/PhysRevB.67.144101Suche in Google Scholar
[42] D.Gómez-Garcí, C.Lorenzo-Martín, A.Muñoz-Bernabé, A.Domínguez-Rodríguez: Philos. Mag. A83 (2003) 93–108. 10.1080/0141861021000017783Suche in Google Scholar
[43] K.Matsui, N.Ohmichi, M.Ohgai, H.Yoshida, Y.Ikuhara: J. Ceram. Soc. Japan114 (2006) 230–237. 10.2109/jcersj.114.230Suche in Google Scholar
[44] M.J.Roddy, W.R.Cannon, G.Skandan, H.Hahn: J. Eur. Ceram. Soc.22 (2002) 2657–2662. 10.1016/S0955-2219(02)00130-9Suche in Google Scholar
[45] M.Yoshida, Y.Shinoda, T.Akatsu, F.Wakai: J. Am. Ceram. Soc.85 (2002) 2834–2836. 10.1111/j.1151-2916.2002.tb00536.xSuche in Google Scholar
[46] M.Yoshida, Y.Shinoda, T.Akasu, F.Wakai: J. Am. Ceram. Soc.87 (2004) 1122–1125. 10.1111/j.1551-2916.2004.01122.xSuche in Google Scholar
[47] P.Duran, M.Villegas, F.Capel, P.Recio, C.Moure: J. Eur. Ceram. Soc.16 (1996) 945–952. 10.1016/0955-2219(96)00015-5Suche in Google Scholar
[48] R.Chaim, R.Ramamoorthy, A.Goldstein, I.Eldror, A.Gurman: J. Eur. Ceram. Soc.23 (2003) 647–657. 10.1016/S0955-2219(02)00198-XSuche in Google Scholar
[49] C.Lorenzo-Martín, D.Gómez-Garcí, A.Gallardo-Lopez, A.Domínguez-Rodríguez, R.Chaim: Mater. Sci. Forum447–448 (2004) 353–358. 10.4028/www.scientific.net/MSF.447-448.353Suche in Google Scholar
[50] R.Chaim: Mater. Sci. Eng. A486 (2008) 439–446. 10.1016/j.msea.2007.09.022Suche in Google Scholar
[51] A.Domínguez-RodríguezD.Gómez-Garcí, M.Castillo-Rodriguez: J. Eur. Ceram. Soc.28 (2008) 571–575. 10.1016/j.jeurceramsoc.2007.08.002Suche in Google Scholar
[52] A.H.Chokshi: Scripta Mater.48 (2003) 791–796. 10.1016/S1359-6462(02)00519-5Suche in Google Scholar
[53] T.G.Nieh, J.Wadsworth, O.D.Sherby: (Superplasticity in metals and ceramics), (1997) Cambridge University Press, UK. 10.1017/CBO9780511525230Suche in Google Scholar
[54] J.Philibert: Solid State Ionics12 (1984) 321–336. 10.1016/0167-2738(84)90161-9Suche in Google Scholar
[55] F.Finocchi, J.Goniakowski, C.Noguera: Phys. Rev. B59 (1999) 5178–5188. 10.1103/PhysRevB.59.5178Suche in Google Scholar
[56] A.Ueda, R.Mu, Y.S.Tung, M.H.Wu, A.Zavalin, P.W.Wang, D.O.Hendeson: J. Phys. Cond. Mater.13 (2001) 5535–5544. 10.1088/0953-8984/13/23/313Suche in Google Scholar
[57] P.Flewit, R.Wild: (Grain Boundaries: Their Microstructure and Chemistry) (2001) John Wiley & Sons Ltd., Chichester, UK, 137.Suche in Google Scholar
[58] A.Barnhoorn, I.Jackson, J.D.Fitz Gerald, Y.Aizawa: J. Eur. Ceram. Soc.27 (2007) 4697–4703. 10.1016/j.jeurceramsoc.2007.04.005Suche in Google Scholar
[59] U.H.Faul, J.D.Fitz Gerald, I.Jackson: J. Geophys. Res. Sol. Earth109 (2004) B06202. 10.1029/2003JB002407Suche in Google Scholar
[60] J.A.Hines, Y.Ikuhara, A.H.Chokshi, T.Sakuma: Acta Mater.46 (1998) 5557–5568. 10.1016/S1359-6454(98)00171-2Suche in Google Scholar
[61] E.Sato, H.Morioka, K.Kubribayashi, D.Sundararaman: J. Mater. Sci.34 (1999) 4511–4518. 10.1023/A:1004693306615Suche in Google Scholar
[62] K.Morita, K.Hiraga, B.N.Kim: Acta Mater.52 (2004) 3355–3364. 10.1016/j.actamat.2004.03.033Suche in Google Scholar
[63] H.Yoshida, K.Morita, B.N.Kim, K.Hiraga, T.Yamamoto: Acta Mater.57 (2009) 3029–3038. 10.1016/j.actamat.2009.03.009Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal