Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
-
Sangeeta Khare
, Kyooyoung Lee und H. K. D. H. Bhadeshia
Abstract
Well–designed cementite–free bainitic steels are important in contributing to unique combinations of strength, toughness and cost. We examine here the relative effects of molybdenum and boron on the kinetics of transformation of austenite particularly into allotriomorphic ferrite and bainite. There are some surprising results on the role of boron, which is found in some circumstances to accelerate the transformation to allotriomorphic ferrite. This, and other features of transformation behaviour are assessed in the context of phase transformation mechanisms.
References
[1] A.Brownrigg: Boron in steel – a literature review. J. Austr. Inst. Met.18 (1973) 124–136.Suche in Google Scholar
[2] L.F.Porter: The present status and future of boron steels, in: S.K.Banerji, J.E.Morral (Eds.): Boron in steel, Warrendale, Pennsylvania, USA TMS-AIME. (1980) 199–211.Suche in Google Scholar
[3] D.T.Llewellyn, R.C.Hudd: Steels: Metallurgy and Applications. Butterworth–Heinemann (1998).Suche in Google Scholar
[4] F.B.Pickering: Physical Metallurgy and the Design of Steels. Applied Science Publishers, Essex, U. K. (1978).Suche in Google Scholar
[5] M.A.Grossman: Elements of Hardenability. American Society of Metals, Cleveland, Ohio, USA (1952).Suche in Google Scholar
[6] R.A.Grange: Metall. Trans. B4 (1973) 2231–2244.DOI:10.1007/BF02669363Suche in Google Scholar
[7] K.J.Irvine, F.B.Pickering: High carbon bainitic steels. In: Physical properties of martensite and bainite, special report 93, London, Iron and Steel Institute (1965) 110–125.Suche in Google Scholar
[8] T.Hara, H.Asahi, R.Uemori, H.Tamehiro: ISIJ Internat.44 (2004) 1431–1440.DOI:10.2355/isijinternational.44.1431Suche in Google Scholar
[9] F.G.Caballero, H.K.D.H.Bhadeshia, K.J.A.Mawella, D.G.Jones, P.Brown: Mater. Sci. Technol.17 (2001) 1512–516.Suche in Google Scholar
[10] F.G.Caballero, H.K.D.H.Bhadeshia, K.J.A.Mawella, D.G.Jones, P.Brown: Mater. Sci. Technol.17 (2001) 517–522.10.1179/026708301101510357Suche in Google Scholar
[11] F.G.Caballero, H.K.D.H.Bhadeshia: Curr. Opinion Sol. State Mater. Sci.8 (2005) 186–193.Suche in Google Scholar
[12] H.K.D.H.Bhadeshia: Mater. Sci. Technol.21 (2005) 1293–1302.DOI:10.1179/174328405X63999Suche in Google Scholar
[13] C.L.Briant, S.K.Banerji: Internat. Met. Rev.4 (1978) 164–199.Suche in Google Scholar
[14] I.Olefjord: Internat. Met. Rev.4 (1989) 149–163.Suche in Google Scholar
[15] H.K.D.H.Bhadeshia: Met. Sci.16 (1982) 159–165.10.1179/030634582790427217Suche in Google Scholar
[16] H.K.D.H.Bhadeshia: Met. Sci.15 (1981) 175–177.10.1179/030634581790426714Suche in Google Scholar
[17] H.K.D.H.Bhadeshia: Met. Sci.15 (1981) 178–150.10.1179/030634581790426697Suche in Google Scholar
[18] H.-S.Yang, H.K.D.H.Bhadeshia: Mater. Sci. Technol.23 (2007) 556–560.DOI:10.1179/174328407X176857Suche in Google Scholar
[19] J.H.Pak, H.K.D.H.Bhadeshia, L.Karlsson, E.Keehan: Sci. Technol.13 (2008) 593–597.Suche in Google Scholar
[20] NPL. MTDATA. Software, National Physical Laboratory, Teddington, U. K. (2006).Suche in Google Scholar
[21] http://cml.postech.ac.kr. Computational Metallurgy Laboratory, GIFT, POSTECH, 2009.Suche in Google Scholar
[22] K.J.Irvine, F.B.Pickering, W.C.Heselwood: J. of the Iron and Steel Inst.186 (1957) 54–67.Suche in Google Scholar
[23] H.K.D.H.Bhadeshia: Prog. Mat. Sci.29 (1985) 321–386.DOI:10.1016/0079-6425(85)90004-0Suche in Google Scholar
[24] J.W.Christian: Theory of Transformations in Metal and Alloys, Part I. Pergamon Press, Oxford, U. K., 3rd Edition (2003).Suche in Google Scholar
[25] R.C.Reed, H.K.D.H.Bhadeshia: Mater. Sci. Technol.8 (1992) 421–435.10.1179/mst.1992.8.5.421Suche in Google Scholar
[26] P.G.Self, H.K.D.H.Bhadeshia, W.M.Stobbs: Ultramicroscopy6 (1981) 29–40.DOI:10.1016/S0304-3991(81)80175-1Suche in Google Scholar
[27] H.K.D.H.Bhadeshia, A.R.Waugh: Acta Metall.30 (1982) 775–784.DOI:10.1016/0001-6160(82)90075-XSuche in Google Scholar
[28] M.Peet, S.S.Babu, M.K.Miller, H.K.D.H.Bhadeshia: Scripta Mater.50 (2004) 1277–1281.DOI:10.1016/j.scriptamat.2004.02.024Suche in Google Scholar
[29] C.Zener: Trans. Am. Inst. Min. Metall. Eng.167 (1946) 550–595.Suche in Google Scholar
[30] R.F.Hehemann, K.R.Kinsman, H.I.Aaronson: Metall. Trans.3 (1972) 1077–1094.DOI:10.1007/BF02642439Suche in Google Scholar
[31] H.K.D.H.Bhadeshia, D.V.Edmonds: Acta Metall.28 (1980) 1265–1273.DOI:10.1016/0001-6160(80)90082-6Suche in Google Scholar
[32] A.Ali, M.Ahmed, F.H.Hashmi, A.Q.Khan: Metall. Mater. Trans. A24 (1993) 2145–2150.DOI:10.1007/BF02648588Suche in Google Scholar
[33] L.C.Chang, H.K.D.H.Bhadeshia: Mater. Sci. Technol. (1995) 874–881.10.1179/mst.1995.11.9.874Suche in Google Scholar
[34] D.Gaude-Fugarolas, P.J.Jacques: Modelling the kinetics of bainite transformation in steels, in: J.M.Howe, D.E.Laughlin, J.K.Lee, U.Dahmen, W.A.Soffa (Eds.): Solid-Solid Phase Trans. Inorg. Mater.2 (2005) 795–800.Suche in Google Scholar
[35] F.G.Caballero, M.J.Santofimia, C.Capdevila, C.Garcia-Mateo, C.Garcia de Andrés: ISIJ Internat46 (2006) 1479–1488.DOI:10.2355/isijinternational.46.1479Suche in Google Scholar
[36] H.K.D.H.Bhadeshia: Acta Metall.29 (1981) 1117–1130.DOI:10.1016/0001-6160(81)90063-8Suche in Google Scholar
[37] R.F.Hehemann: The bainite transformation, in: H.I.Aaronson, V.F.Zackay (Eds.): Phase Trans. (1970) 397–432.Suche in Google Scholar
© 2009, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Multiscale materials simulation: the maturing of a scientific concept
- Feature
- Atomistic modelling of materials with bond-order potentials
- Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
- Multiscale modeling of polymers at interfaces
- Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
- Basic
- Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
- Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
- Surface tension of liquid Al–Cu binary alloys
- Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
- A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
- Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
- Applied
- Microstructure and properties of violin strings made of metastable austenitic steel
- Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
- Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
- Ball milling as a possible means to produce zinc based coatings
- Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
- Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
- Investigation of fatigue fracture of generator-rotor fan blades
- Notifications
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Multiscale materials simulation: the maturing of a scientific concept
- Feature
- Atomistic modelling of materials with bond-order potentials
- Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
- Multiscale modeling of polymers at interfaces
- Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
- Basic
- Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
- Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
- Surface tension of liquid Al–Cu binary alloys
- Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
- A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
- Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
- Applied
- Microstructure and properties of violin strings made of metastable austenitic steel
- Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
- Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
- Ball milling as a possible means to produce zinc based coatings
- Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
- Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
- Investigation of fatigue fracture of generator-rotor fan blades
- Notifications
- Personal