A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
-
Kuppuswamy Anantha Padmanabhan
and Mohammed Ishaq Raviathul Basariya
Abstract
A model based on grain/interphase boundary sliding controlled flow that develops to a mesoscopic scale (defined to be equal to or more than a grain diameter) has been used to understand superplasticity in micrometer- and sub-micrometer grained intermetallics. The procedure for analyzing the experimental stress–strain rate data at a fixed initial grain size and temperature is so developed that the free energy of activation for the rate controlling deformation process, and the long range threshold stress which has to be overcome for boundary sliding to develop to a mesoscopic scale, σ0disloc, are estimated directly from the experimental results. The analysis is validated using experimental data pertaining to a number of systems. Directions for further development of the model are indicated.
References
[1] V.K.Sikka, C.T.Liu, E.A.Loria, in: F.H.Froes, S.J.Savage (Eds.), Proc. Structural Metals by Rapid Solidification, ASM, Metals Park, Ohio (1987) 417.Search in Google Scholar
[2] R.M.Imayev, G.A.Salishchev, O.N.Senkov, V.M.Imayev, M.R.Shagiev, N.K.Gabdullin, A.V.Kuznetsov, F.H.Froes: Mater. Sci. Eng. A300 (2001) 263.10.1016/S0921-5093(00)01813-XSearch in Google Scholar
[3] K.A.Padmanabhan, G.J.Davies: Superplasticity, Spinger-Verlag, Berlin (1980).10.1007/978-3-642-81456-3Search in Google Scholar
[4] O.A.Kaibyshev: Superplasticity of Alloys, Intermetallides and Ceramics, Springer-Verlag, Heidelberg–Berlin (1992).10.1007/978-3-642-84673-1Search in Google Scholar
[5] A.H.Chokshi, A.K.Mukherjee, T.G.Langdon: Mater. Sci. Eng. A10 (1993) 237.Search in Google Scholar
[6] T.G.Nieh, J.Wadsworth, O.D.Sherby: Superplasticiy in Metals and Ceramics, Cambridge University Press, Cambridge, UK (1997).10.1017/CBO9780511525230Search in Google Scholar
[7] X.H.Du, J.T.Guo, B.D.Zhou: Mater. Letters52 (2002) 442.10.1016/S0167-577X(01)00441-4Search in Google Scholar
[8] D.H.Sastry, Y.V.R.K.Prasad, S.C.Deevi: Mater Sci. Eng. A299 (2001) 157.10.1016/S0921-5093(00)01380-0Search in Google Scholar
[9] W.Y.Kim, S.Hanada, T.Takasugi: Acta Mater.46 (1998) 3593.10.1016/S1359-6454(98)00029-9Search in Google Scholar
[10] T.G.Nieh, J.Wadsworth: Mater. Sci. Eng. A88 (1997) 239–240.Search in Google Scholar
[11] M.S.Kim, S.Hanada, S.Watanabe, O.Izumi: Mater. Trans. JIM30 (1989) 77.Search in Google Scholar
[12] M.Oikawa, S.Hanada, T.Sakai, S.Watanabe: Mater. Trans. JIM36 (1995) 1140.Search in Google Scholar
[13] T.Takasugi, S.Rikukawa, S.Hanada: Scr. Metall. Mater.25 (1991) 889.10.1016/0956-716X(91)90243-TSearch in Google Scholar
[14] T.Takasugi, S.Rikukawa, S.Hanada: Acta Metall.40 (1992) 1895.10.1016/0956-7151(92)90176-FSearch in Google Scholar
[15] W.Y.Kim, S.Hanada, T.Takasugi: Scr. Mater.37 (1997) 1053.10.1016/S1359-6462(97)00217-0Search in Google Scholar
[16] T.G.Nieh, W.C.Oliver: Scr. Metall.23 (1989) 851.10.1016/0036-9748(89)90258-5Search in Google Scholar
[17] S.L.Stoner, W.C.Oliver, A.K.Mukherjee: Mater. Sci. Eng. A153 (1992) 465.10.1016/0921-5093(92)90238-VSearch in Google Scholar
[18] H.S.Yang, P.Jin, A.K.Mukherjee: Mater. Sci. Eng. A153 (1992) 457.10.1016/0921-5093(92)90237-USearch in Google Scholar
[19] D.Lin, D.Li, Y.Liu: Intermetallics6 (1998) 243.10.1016/S0966-9795(97)00072-1Search in Google Scholar
[20] R.M.Imayev, O.A.Kaibyshev, G.A.Salishchev: Acta Metall. Mater.40 (1992) 581.10.1016/0956-7151(92)90407-6Search in Google Scholar
[21] C.Schuh, D.C.Dunand: Acta Mater.46 (1998) 5663.10.1016/S1359-6454(98)00252-3Search in Google Scholar
[22] D.Jobart, J.J.Blandin: Mater. Sci. Eng. A207 (1996) 170.10.1016/0921-5093(95)10037-7Search in Google Scholar
[23] T.Watanabe, S.Tsurekawa: Acta Mater.47 (1999) 4171.10.1016/S1359-6454(99)00275-XSearch in Google Scholar
[24] R.Bohn, T.Klassen, R.Bormann: Intermetallics9 (2001) 559.10.1016/S0966-9795(01)00039-5Search in Google Scholar
[25] G.A.Salishchev, R.M.Imayev, O.N.Senkov, V.M.Imayev, N.K.Gabdullin, M.R.Shagiev, A.V.Kuznetsov, F.H.Froes: Mater. Sci. Eng. A286 (2000) 236.10.1016/S0921-5093(00)00806-6Search in Google Scholar
[26] Y.S.Nechaev, D.V.Iourtchenko, J.G.Hirschberg, T.N.Veziroglu: Int. J. Hydrogen Energy29 (2004) 1421.10.1016/j.ijhydene.2004.01.011Search in Google Scholar
[27] Y.T.Wu, C.T.Yang, C.H.Koo: Mater. Chem. Phys.73 (2002) 212.10.1016/S0254-0584(01)00379-0Search in Google Scholar
[28] T.Sakuma: Current Opinion in Solid State and Materials Science2 (1997) 296.10.1016/S1359-0286(97)80118-0Search in Google Scholar
[29] J.S.Kim, D.H.Shin, Y.W.Chang, C.S.Lee: Mater. Sci. Eng. A394 (2005) 117.10.1016/j.msea.2004.11.036Search in Google Scholar
[30] J.T.Guo, R.S.Chen, G.S.Li: J. Mater. Proc. Tech.139 (2003) 337.10.1016/S0924-0136(03)00540-5Search in Google Scholar
[31] G.Wegmann, R.Gerling, F.P.Schimansky, H.Clemens, A.Bartels: Intermetallics10 (2002) 511.10.1016/S0966-9795(02)00026-2Search in Google Scholar
[32] J.Sun, Y.H.He, J.S.Wu: Mater. Sci. Eng. A885 (2002) 329–331.Search in Google Scholar
[33] S.X.McFadden, R.Z.Valiev, A.K.Mukherjee: Mater. Sci. Eng. A849 (2001) 319–321.Search in Google Scholar
[34] J.Hu, D.Lin: Mater. Letters58 (2004) 1297.10.1016/j.matlet.2003.04.001Search in Google Scholar
[35] D.Jiang, D.Lin: D. Mater. Letters57 (2002) 747.10.1016/S0167-577X(02)00866-2Search in Google Scholar
[36] R.S.Sundar, R.G.Baligidad, Y.V.R.K.Prasad, D.H.Sastry: Mater. Sci. Eng. A258 (1998) 219.10.1016/S0921-5093(98)00937-XSearch in Google Scholar
[37] W.L.Zhou, J.T.Guo, R.S.Chen, G.S.Li, J.Y.Zhou: Mater. Letters47 (2001) 30.10.1016/S0167-577X(00)00207-XSearch in Google Scholar
[38] W.L.Zhou, J.T.Guo, R.S.Chen, J.Y.Zhou: Mater. Letters51 (2001) 342.10.1016/S0167-577X(01)00316-0Search in Google Scholar
[39] R.Lyszkowski, J.Bystrzycki: Intermetallics, 14 (2006) 1231.10.1016/j.intermet.2005.12.014Search in Google Scholar
[40] G.Sharma, R.Kishore, M.Sundararaman, R.V.Ramanujan: Mater. Sci. Eng. A419 (2006) 144.10.1016/j.msea.2005.12.015Search in Google Scholar
[41] L.Zhou, J.P.Immarigeon, W.Wallace: Mater. Sci. Eng. A211 (1994) 1–83.10.1016/0921-5093(94)90472-3Search in Google Scholar
[42] T.L.Lin, A.Shan, D.Li: Scr. Metall. Mater.31 (1991) 1455.10.1016/0956-716X(94)90055-8Search in Google Scholar
[43] D.Li, A.Shan, Y.Liu, D.Lin: Scr. Metall. Mater.33 (1995) 681.10.1016/0956-716X(95)00283-2Search in Google Scholar
[44] D.Lin, T.L.LinA.Shan, M.Chen: Intermetallics4 (1996) 489.10.1016/0966-9795(96)00027-1Search in Google Scholar
[45] Y.Liu, D.Li, T.L.Lin, S.Chen: Scr. Mater.34 (1996) 1095.10.1016/1359-6462(95)00634-6Search in Google Scholar
[46] D.Jiang, D.Lin: J. Alloys and Compounds415 (2006) 177.10.1016/j.jallcom.2005.08.013Search in Google Scholar
[47] K.A.Padmanabhan, J.Hirsch, K.Luecke: J. Mater. Sci.26 (1991) 5301.10.1007/BF01143225Search in Google Scholar
[48] K.A.Padmanabhan, J.Hirsch, K.Luecke: J. Mater. Sci.26 (1991) 5309.10.1007/BF01143226Search in Google Scholar
[49] K.A.Padmanabhan, O.Engler, K.Luecke: J. Mater. Sci.31 (1996) 3971.10.1007/BF00352658Search in Google Scholar
[50] O.Engler, K.A.Padmanabhan, K.Luecke: Modell. Simul. Mater. Sci. Eng.8 (2000) 477.10.1088/0965-0393/8/4/306Search in Google Scholar
[51] D.Lin, J.Hu, D.Jiang: Intermetallics13 (2005) 343.10.1016/j.intermet.2004.07.008Search in Google Scholar
[52] C.Gandhi, R.Raj: Acta Metall. Mater.39 (1991) 679.10.1016/0956-7151(91)90136-OSearch in Google Scholar
[53] J.Hu, D.Lin: Mater. Sci. Eng. A371 (2004) 113.10.1016/j.msea.2003.10.245Search in Google Scholar
[54] A.R.Ricks, P.J.Winkler, in: Proc. Sixth Int. Al-Li Conf., M. Peters, P.J. Winkler (Eds.), DGM Informationsgesellschaft GmbH, Garmisch-Partenkirchen, Germany (1992) 1035.Search in Google Scholar
[55] K.A.Padmanabhan, A.G.Balogh, W.Puff: J. Mater. Res.14 (1999) 44.10.1557/JMR.1999.0009Search in Google Scholar
[56] W.J.Kim, Y.K.Sa, J.B.Lee, H.G.Jeong: Intermetallics14 (2006) 377.10.1016/j.intermet.2005.07.004Search in Google Scholar
[57] T.G.Nieh, L.M.Hsiung, J.Wadsworth: Intermetallics7 (1999) 163.10.1016/S0966-9795(98)00017-XSearch in Google Scholar
[58] H.Hofmann, G.Frommeyer, W.Herzog: Mater. Sci. Eng. A203 (1995) 128.10.1016/0921-5093(95)09848-8Search in Google Scholar
[59] B.Zhang, J.N.Wang, J.Yang: Mater. Res. Bulletin37 (2002) 2315.10.1016/S0025-5408(02)00932-7Search in Google Scholar
[60] M.J.Stowell, J.L.Robertson, B.M.Watts: Met. Sci. J.3 (1969) 41.Search in Google Scholar
[61] B.M.Watts, M.J.Stowell: J. Mater. Sci.6 (1971) 228.10.1007/BF00550018Search in Google Scholar
[62] M.Suery, B.Baudelet: J. Mater. Sci.8 (1973) 363.10.1007/BF00550156Search in Google Scholar
[63] P.Griffths, C.Hammond: Acta Metall.20 (1972) 935.10.1016/0001-6160(72)90087-9Search in Google Scholar
[64] K.A.Padmanabhan: Mater. Sci. Eng.29 (1977) 1.10.1016/0025-5416(77)90140-9Search in Google Scholar
[65] K.A.Padmanabhan: J. Schlipf, Mater. Sci. Tech.12 (1996) 391.10.1179/026708396790165920Search in Google Scholar
[66] H.Hahn, K.A.Padmanabhan: Phil. Mag. B76 (1997) 559.10.1080/01418639708241122Search in Google Scholar
[67] U.Betz, K.A.Padmanabhan, H.Hahn: J. Mater. Sci.36 (2001) 5811.10.1023/A:1012956005571Search in Google Scholar
[68] K.A.Padmanabhan, H.Gleiter: Mater. Sci. Eng. A381 (2004) 28: see also 397 (2005) 400.10.1016/j.msea.2004.08.043Search in Google Scholar
[69] J.D.Eshelby: Proc. Roy. Soc. (London) A241 (1957) 376.10.1098/rspa.1957.0133Search in Google Scholar
[70] P.Haasen: Physical Metallurgy, Cambridge University Press, Cambridge, U.K. (1978) 46–47.Search in Google Scholar
[71] H.van Swygenhoven, D.Frakas, A.Caro: Phys. Rev. B62 (2000) 831.10.1103/PhysRevB.62.831Search in Google Scholar
[72] D.Wolf: Acta Metall. Mater.38 (1990) 781.10.1016/0956-7151(90)90030-KSearch in Google Scholar
[73] D.Wolf: Acta Metall. Mater.38 (1990) 791.10.1016/0956-7151(90)90031-BSearch in Google Scholar
[74] K.A.Padmanabhan, G.P.Dinda, H.Hahn, H.Gleiter: Mater. Sci. Eng. A452–453 (2007) 462.10.1016/j.msea.2006.10.084Search in Google Scholar
[75] R.E.Stoller, S.J.Zinkle: J. Nucl. Mater.283–287 (2000) 349.10.1016/S0022-3115(00)00378-0Search in Google Scholar
[76] B.S.Bokshetein, S.Z.Bokshetein, A.A.Z.Zhukhourtskii: Thermodynamics and Kinetics of Diffusion in Solids, Oxonion Press Pvt. Ltd., New Delhi (1985) 22.Search in Google Scholar
[77] A.S.Argon: Acta Metall.27 (1979) 47.10.1016/0001-6160(79)90055-5Search in Google Scholar
[78] R.Hill: The Mathematical Theory of Plasticity, Clarendon, Oxford, U.K. (1971) 25.Search in Google Scholar
[79] A.Kelly: Strong Solids, Clarendon, Oxford, U.K., (1996) 33–35.Search in Google Scholar
[80] K.A.Padmanabhan, R.A.Vasin, F.U.Enikeev: Superplastic Flow, Phenomenology and Mechanics, Springer Verlag, Heidelberg–Berlin (2001) 63–64.Search in Google Scholar
[81] Yu.N.Robotnov: Creep Problems in Structural Members, English translation by F.A.Leckie, North-Holland, London (1969).Search in Google Scholar
[82] D.Wolf, J.A.Jaszczak: J. Computer-Aided Materials Design, 1 (1993) 111.10.1007/BF00708705Search in Google Scholar
[83] M.D.Kluge, D.Wolf, J.F.Lutsko, S.R.Philpot: J Appl. Phys.67 (1990) 2370.10.1063/1.345533Search in Google Scholar
[84] P.Keblinski, D.Wolf, S.R.Philpot, H.Gleiter: Scr. Mater.41 (1999) 631.10.1016/S1359-6462(99)00142-6Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Multiscale materials simulation: the maturing of a scientific concept
- Feature
- Atomistic modelling of materials with bond-order potentials
- Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
- Multiscale modeling of polymers at interfaces
- Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
- Basic
- Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
- Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
- Surface tension of liquid Al–Cu binary alloys
- Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
- A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
- Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
- Applied
- Microstructure and properties of violin strings made of metastable austenitic steel
- Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
- Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
- Ball milling as a possible means to produce zinc based coatings
- Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
- Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
- Investigation of fatigue fracture of generator-rotor fan blades
- Notifications
- Personal
Articles in the same Issue
- Contents
- Contents
- Editorial
- Multiscale materials simulation: the maturing of a scientific concept
- Feature
- Atomistic modelling of materials with bond-order potentials
- Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
- Multiscale modeling of polymers at interfaces
- Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
- Basic
- Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
- Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
- Surface tension of liquid Al–Cu binary alloys
- Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
- A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
- Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
- Applied
- Microstructure and properties of violin strings made of metastable austenitic steel
- Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
- Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
- Ball milling as a possible means to produce zinc based coatings
- Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
- Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
- Investigation of fatigue fracture of generator-rotor fan blades
- Notifications
- Personal