Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
-
Rebecca Janisch
and Christian Elsässer
Abstract
The investigation of segregation and embrittlement at grain boundaries in metals is a research area with a long tradition. In recent times, the feasibility of computational studies on the atomic scale gave a new impetus to the community. In this feature article we summarize our contributions to the understanding of segregation of interstitial impurities and embrittlement at grain boundaries in the bcc transition metals against the background of research activities in the field. We mainly discuss the benefits and limitations of ab-initio electronic structure calculations.
References
[1] D.A.Smith: Interface Science, 4, 1996, 11.Search in Google Scholar
[2] M.Rühle, M.Wilkens in: R.W.Cahn, P.Haasen (Eds.), Physical Metallurgy, ch. Transmission electron microscopy. Elsevier Science BV, 1996.10.1016/B978-044489875-3/50016-8Search in Google Scholar
[3] W.E.King, G.H.Campbell: Phys. Stat. Sol. A166 (1998) 343–356.10.1002/(SICI)1521-396X(199803)166:1<343::AID-PSSA343>3.0.CO;2-ZSearch in Google Scholar
[4] D.A.Muller, M.J.Mills: Mat. Sci. Eng. A260 (1999) 12–28.10.1016/S0921-5093(98)00979-4Search in Google Scholar
[5] W.Sigle: Annu. Rev. Mater. Res.35 (2005) 239–314.10.1146/annurev.matsci.35.102303.091623Search in Google Scholar
[6] C.Schmidt, F.Ernst, M.W.Finnis, V.Vitek: Phys. Rev. Lett.75 (1995) 2160–2163.10.1103/PhysRevLett.75.2160Search in Google Scholar
[7] M.W.Finnis: Mat. Sci. Forum207–209 (1996) 35–46.10.4028/www.scientific.net/MSF.207-209.35Search in Google Scholar
[8] C.Schmidt, M.W.Finnis, F.Ernst, V.Vitek: Phil. Mag. A77 (1998) 1161–1184.10.1080/01418619808214246Search in Google Scholar
[9] A.F.Wright: Phys. Rev. B50 (1994) 15248.10.1103/PhysRevB.50.15248Search in Google Scholar
[10] W.E.King, G.H.Campbell, S.M.Foiles, D.Cohen, K.M.Hanson: J. Microscopy190 (1998) 131–143.10.1046/j.1365-2818.1998.3320899.xSearch in Google Scholar
[11] F.Ercolessi, J.B.Adams: Europhys. Lett.26 (1994) 583–588.10.1209/0295-5075/26/8/005Search in Google Scholar
[12] X.-Y.Liu, F.Ercolessi, J.B.Adams: Modelling Simul. Mater. Sci. Eng.12 (2004) 665–670.10.1088/0965-0393/12/4/007Search in Google Scholar
[13] T.Ochs, C.Elsässer, M.Mrovec, V.Vitek, J.Belak, J.A.Moriarty: Phil. Mag. A80 (2000) 2405–2423.10.1080/01418610008216481Search in Google Scholar
[14] M.Mrovec, R.Gröger, A.Bailey, D.Nguyen-Manh, C.Elsässer, V.Vitek: Phys. Rev. B75 (2007) 104119.10.1103/PhysRevB.75.104119Search in Google Scholar
[15] M.Mrovec, C.Elsässer, P.Gumbsch: Phil. Mag., accepted for publication, 2009.Search in Google Scholar
[16] T.Ochs, O.Beck, C.Elsässer, B.Meyer: Phil. Mag. A80 (2000) 351–372.10.1080/01418610008212057Search in Google Scholar
[17] M.Čák, M.Šob, J.Hafner: Phys. Rev. B78 (2008) 054418.10.1103/PhysRevB.78.054418Search in Google Scholar
[18] G.H.Campbell, M.Kumar, W.E.King, J.Belak, J.A.Moriarty, S.M.Foiles: Phil. Mag. A82 (2002) 1573.Search in Google Scholar
[19] R.Janisch, C.Elsässer: Phys. Rev. B67 (2003) 2241101.10.1103/PhysRevB.67.224101Search in Google Scholar
[20] M.Mrovec, T.Ochs, C.Elsässer, V.Vitek, D.Nguyen-Manh, D.G.Pettifor: Z. Metallkd.94 (2003) 244–249.10.3139/146.030244Search in Google Scholar
[21] A.P.Sutton, R.W.Balluffi: Interfaces in Crystalline Materials. Oxford, Oxford University Press, new Ed., 2006.Search in Google Scholar
[22] P.Lejček, S.Hofmann: Critical Reviews in Solid State and Materials Science20 (1995) 1–85.10.1080/10408439508243544Search in Google Scholar
[23] G.Bozzolo, J.Ferrante, J.R.Smith: Phys. Rev. B45 (1992) 493–496.10.1103/PhysRevB.45.493Search in Google Scholar PubMed
[24] R.Janisch, C.Elsässer: Phys. Rev. B77 (2008) 094118.10.1103/PhysRevB.77.094118Search in Google Scholar
[25] A.H.Cottrell: Mat. Sci. Tech.6 (1990) 807–810.Search in Google Scholar
[26] L.Goodwin, R.J.Needs, V.Heine: Phys. Rev. Lett.60 (1988) 2050–2053.10.1103/PhysRevLett.60.2050Search in Google Scholar
[27] W.T.Geng, A.J.Freeman, G.B.Olson: Phys. Rev. B63 (2001) 165415.10.1103/PhysRevB.63.165415Search in Google Scholar
[28] R.J.Rice, J.-S.Wang: Mat. Sci. Eng. A107 (1989) 23–40.10.1016/0921-5093(89)90372-9Search in Google Scholar
[29] W.T.Geng, A.J.Freeman, R.Wu, C.B.Geller, J.E.Raynolds: Phys. Rev. B60 (1999) 7149–7155.10.1103/PhysRevB.60.7149Search in Google Scholar
[30] R.Wu, A.J.Freeman, G.B.Olson: Phys. Rev. B53 (1996) 7504–7509.10.1103/PhysRevB.53.7504Search in Google Scholar
[31] R.Wu, A.J.Freeman, G.B.Olson: Phys. Rev. B50 (1994) 75–81.10.1103/PhysRevB.50.75Search in Google Scholar PubMed
[32] E.Wachowicz, A.Kiejna: Comp. Mat. Sci.43 (2008) 736–743.10.1016/j.commatsci.2008.01.063Search in Google Scholar
[33] R.Schweinfest, A.T.Paxton, M.W.Finnis: Nature432 (2004) 1008–1011.10.1038/nature03198Search in Google Scholar PubMed
[34] A.Y.Lozovoi, A.T.Paxton, M.W.Finnis: Phys. Rev. B74 (2006) 155416.10.1103/PhysRevB.74.155416Search in Google Scholar
[35] W.Sigle, L.-S.Chang, W.Gust: Phil. Mag. A82 (2002) 1595–1608.10.1080/01418610208240039Search in Google Scholar
[36] V.J.Keast, A.La Fontaine, J.du Plessis: Acta Mater.55 (2007) 5149–5155.10.1016/j.actamat.2007.05.034Search in Google Scholar
[37] J.M.PénissonM.Bacia, M.Biscondi: Phil. Mag. A73 (1996) 859.10.1080/01418619608243692Search in Google Scholar
[38] D.Lepski, P.Burck: Phys. Stat. Sol. A64 (1981) 625.10.1002/pssa.2210640227Search in Google Scholar
[39] D.Lepski, P.Burck: Phys. Stat. Sol. A70 (1982) 571.10.1002/pssa.2210700226Search in Google Scholar
[40] O.Vedmedenko, F.Rösch, C.Elsässer: Acta Mater. (2008) 4984–4992.10.1016/j.actamat.2008.06.014Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Multiscale materials simulation: the maturing of a scientific concept
- Feature
- Atomistic modelling of materials with bond-order potentials
- Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
- Multiscale modeling of polymers at interfaces
- Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
- Basic
- Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
- Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
- Surface tension of liquid Al–Cu binary alloys
- Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
- A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
- Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
- Applied
- Microstructure and properties of violin strings made of metastable austenitic steel
- Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
- Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
- Ball milling as a possible means to produce zinc based coatings
- Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
- Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
- Investigation of fatigue fracture of generator-rotor fan blades
- Notifications
- Personal
Articles in the same Issue
- Contents
- Contents
- Editorial
- Multiscale materials simulation: the maturing of a scientific concept
- Feature
- Atomistic modelling of materials with bond-order potentials
- Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
- Multiscale modeling of polymers at interfaces
- Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
- Basic
- Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
- Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
- Surface tension of liquid Al–Cu binary alloys
- Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
- A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
- Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
- Applied
- Microstructure and properties of violin strings made of metastable austenitic steel
- Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
- Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
- Ball milling as a possible means to produce zinc based coatings
- Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
- Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
- Investigation of fatigue fracture of generator-rotor fan blades
- Notifications
- Personal