Home Technology Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
Article
Licensed
Unlicensed Requires Authentication

Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system

  • Olga Fabrichnaya , Galina Savinykh , Gerhard Schreiber and Hans J. Seifert
Published/Copyright: June 11, 2013

Abstract

Thermodynamic calculations in the ZrO2–La2O3–Y2O3 system were used to select compositions for experimental investigations. The selected compositions were investigated using X-ray diffraction, scanning electron microscopy combined with energy dispersive X-ray spectroscopy and differential thermal analysis after prolonged heat treatment at 1250, 1400 and 1600 °C. The X-ray diffraction investigations indicated stability of the La2O2–A + (La,Y)2O3–B + La2Zr2O7 and (La,Y)2O3–B + La2Zr2O7 + LaYO3-perovskite phase fields at 1250 °C, which is contrary to results found in the literature. The differential thermal analysis of the ZrO2-45.8La2O3-20.8Y2O3 composition heat treated at 1250 °C showed no transformations up to 1500 °C. Two peaks were indicated at temperatures above 1450 °C: the first peak at 1530 °C could be attributed to the processes of Y2O3 dissolution and disordering in the pyrochlore phase and the second peak at 1580 °C to transformation of perovskite to monoclinic B phase. The solubility of Y2O3 in pyrochlore phase occurs by Y+3 substitution of both Zr+4 and La+3 ions.


* Correspondence address, Dr. Olga Fabrichnaya TU Bergakademie Freiberg Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany Tel.: +493731 393156 Fax: +493731 393657 E-mail:

References

[1] C.G.Levi: Current opinion in Solid State & Materials Science8 (2004) 77.DOI:10.1016/j.cossms.2004.03.009Search in Google Scholar

[2] M.Matsumoto, H.Takayama, D.Yokoe, K.Mukai, H.Matsubara, Y.Kagiya, Y.Sugita: Scripta Mater. 54 (2006) 2035.DOI:10.1016/j.scriptamat.2006.03.015Search in Google Scholar

[3] R.Vassen, F.Traeger, D.Stoever: Int. J. Appl. Ceram. Technol.1 (2004) 351.Search in Google Scholar

[4] M.Colombo: Brit. Ceram. Trans.98 (1999) 271273.DOI:10.1179/096797899680570Search in Google Scholar

[5] F.W.Poulsen, N.van der Puil: Solid State Ionics53–56 (1992) 777.DOI:10.1016/0167-2738(92)90254-MSearch in Google Scholar

[6] M.Mori, T.Abe, H.Itoh, O.Yamamoto, G.Q.Shen, Y.Takeda, N.Imanishi: Solid State Ionics123 (1999) 113.DOI:10.1016/S0167-2738(99)00115-0Search in Google Scholar

[7] S.A.Speakman, R.D.Carneim, E.A.Payzant, T.R.Armstrong: J. Mater. Eng. Perform.13 (2004) 303.DOI:10.1361/10599490419270Search in Google Scholar

[8] A.Ota, Y.Matsumura, M.Yoshinaka, K.Hirota, O.Yamaguchi: J. Mater. Sci. Lett.17 (1998) 1998.Search in Google Scholar

[9] E.R.Andrievskaya, V.P.Red'ko: Mater. Sci. Forum518 (2006) 343.4028/www.scientific.net/MSF.518.343Search in Google Scholar

[10] E.R.Andrievskaya, L.M.Lopato: Powder Metall. Met. Ceram.39 (2000) 445.DOI:10.1023/A:1011310305155Search in Google Scholar

[11] M.Chen, A.N.Grundy, B.Hallstedt, L.J.Gauckler: Calphad30 (2006) 489.DOI:10.1016/j.calphad.2006.04.003Search in Google Scholar

[12] O.Fabrichnaya, M.Zinkevich, F.Aldinger: Int. J. Mat. Res.97 (2007) 838.Search in Google Scholar

[13] O.Fabrichnaya, M.Zinkevich, F.Aldinger: Int. J. Mat. Res.96 (2006) 1495.Search in Google Scholar

[14] Ch.Wang, O.Fabrichnaya, M.Zinkevich, Y.Du, F.Aldinger: Calphad32 (2008) 111.DOI:10.1016/j.calphad.2007.07.005Search in Google Scholar

[15] O.Fabrichnaya, S.Lakiza, Ch.Wang, M.Zinkevich, F.Aldinger: J. Alloys Compd.453 (2008) 271.DOI:10.1016/j.jallcom.2006.11.102Search in Google Scholar

[16] M.Hillert: J. Alloys Compd.320 (2001) 161.DOI:10.1016/S0925-8388(00)01481-XSearch in Google Scholar

[17] J.Coutures, M.Foex: J. Solid State Chem.11 (1974) 294.DOI:10.1016/S0022-4596(74)80034-4Search in Google Scholar

[18] L.M.Lopato, B.S.Nigmanov, A.V.Shevchenko, Z.A.Zaiseva: Inorg. Mater.22 (1986) 678.Search in Google Scholar

[19] M.Mizino, A.Rouanet, T.Yamada, T.Noguchi: Yogyo Kyokaishi84 (1976) 324.Search in Google Scholar

Received: 2008-10-15
Accepted: 2009-6-23
Published Online: 2013-06-11
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Multiscale materials simulation: the maturing of a scientific concept
  5. Feature
  6. Atomistic modelling of materials with bond-order potentials
  7. Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
  8. Multiscale modeling of polymers at interfaces
  9. Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
  10. Basic
  11. Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
  12. Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
  13. Surface tension of liquid Al–Cu binary alloys
  14. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
  15. A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
  16. Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
  17. Applied
  18. Microstructure and properties of violin strings made of metastable austenitic steel
  19. Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
  20. Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
  21. Ball milling as a possible means to produce zinc based coatings
  22. Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
  23. Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
  24. Investigation of fatigue fracture of generator-rotor fan blades
  25. Notifications
  26. Personal
Downloaded on 1.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110214/html
Scroll to top button