Home Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
Article
Licensed
Unlicensed Requires Authentication

Relative effects of Mo and B on ferrite and bainite kinetics in strong steels

  • Sangeeta Khare , Kyooyoung Lee and H. K. D. H. Bhadeshia
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Well–designed cementite–free bainitic steels are important in contributing to unique combinations of strength, toughness and cost. We examine here the relative effects of molybdenum and boron on the kinetics of transformation of austenite particularly into allotriomorphic ferrite and bainite. There are some surprising results on the role of boron, which is found in some circumstances to accelerate the transformation to allotriomorphic ferrite. This, and other features of transformation behaviour are assessed in the context of phase transformation mechanisms.


* Correspondence address, H.K.D.H. Bhadeshia University of Cambridge, Materials Science and Metallurgy Pembroke Street, Cambridge CB2 3QZ, U. K. Tel.: +441223 334301 Fax: +441223 334567 E-mail:

References

[1] A.Brownrigg: Boron in steel – a literature review. J. Austr. Inst. Met.18 (1973) 124136.Search in Google Scholar

[2] L.F.Porter: The present status and future of boron steels, in: S.K.Banerji, J.E.Morral (Eds.): Boron in steel, Warrendale, Pennsylvania, USA TMS-AIME. (1980) 199211.Search in Google Scholar

[3] D.T.Llewellyn, R.C.Hudd: Steels: Metallurgy and Applications. Butterworth–Heinemann (1998).Search in Google Scholar

[4] F.B.Pickering: Physical Metallurgy and the Design of Steels. Applied Science Publishers, Essex, U. K. (1978).Search in Google Scholar

[5] M.A.Grossman: Elements of Hardenability. American Society of Metals, Cleveland, Ohio, USA (1952).Search in Google Scholar

[6] R.A.Grange: Metall. Trans. B4 (1973) 22312244.DOI:10.1007/BF02669363Search in Google Scholar

[7] K.J.Irvine, F.B.Pickering: High carbon bainitic steels. In: Physical properties of martensite and bainite, special report 93, London, Iron and Steel Institute (1965) 110125.Search in Google Scholar

[8] T.Hara, H.Asahi, R.Uemori, H.Tamehiro: ISIJ Internat.44 (2004) 14311440.DOI:10.2355/isijinternational.44.1431Search in Google Scholar

[9] F.G.Caballero, H.K.D.H.Bhadeshia, K.J.A.Mawella, D.G.Jones, P.Brown: Mater. Sci. Technol.17 (2001) 1512516.Search in Google Scholar

[10] F.G.Caballero, H.K.D.H.Bhadeshia, K.J.A.Mawella, D.G.Jones, P.Brown: Mater. Sci. Technol.17 (2001) 517522.10.1179/026708301101510357Search in Google Scholar

[11] F.G.Caballero, H.K.D.H.Bhadeshia: Curr. Opinion Sol. State Mater. Sci.8 (2005) 186193.Search in Google Scholar

[12] H.K.D.H.Bhadeshia: Mater. Sci. Technol.21 (2005) 12931302.DOI:10.1179/174328405X63999Search in Google Scholar

[13] C.L.Briant, S.K.Banerji: Internat. Met. Rev.4 (1978) 164199.Search in Google Scholar

[14] I.Olefjord: Internat. Met. Rev.4 (1989) 149163.Search in Google Scholar

[15] H.K.D.H.Bhadeshia: Met. Sci.16 (1982) 159165.10.1179/030634582790427217Search in Google Scholar

[16] H.K.D.H.Bhadeshia: Met. Sci.15 (1981) 175177.10.1179/030634581790426714Search in Google Scholar

[17] H.K.D.H.Bhadeshia: Met. Sci.15 (1981) 178150.10.1179/030634581790426697Search in Google Scholar

[18] H.-S.Yang, H.K.D.H.Bhadeshia: Mater. Sci. Technol.23 (2007) 556560.DOI:10.1179/174328407X176857Search in Google Scholar

[19] J.H.Pak, H.K.D.H.Bhadeshia, L.Karlsson, E.Keehan: Sci. Technol.13 (2008) 593597.Search in Google Scholar

[20] NPL. MTDATA. Software, National Physical Laboratory, Teddington, U. K. (2006).Search in Google Scholar

[21] http://cml.postech.ac.kr. Computational Metallurgy Laboratory, GIFT, POSTECH, 2009.Search in Google Scholar

[22] K.J.Irvine, F.B.Pickering, W.C.Heselwood: J. of the Iron and Steel Inst.186 (1957) 5467.Search in Google Scholar

[23] H.K.D.H.Bhadeshia: Prog. Mat. Sci.29 (1985) 321386.DOI:10.1016/0079-6425(85)90004-0Search in Google Scholar

[24] J.W.Christian: Theory of Transformations in Metal and Alloys, Part I. Pergamon Press, Oxford, U. K., 3rd Edition (2003).Search in Google Scholar

[25] R.C.Reed, H.K.D.H.Bhadeshia: Mater. Sci. Technol.8 (1992) 421435.10.1179/mst.1992.8.5.421Search in Google Scholar

[26] P.G.Self, H.K.D.H.Bhadeshia, W.M.Stobbs: Ultramicroscopy6 (1981) 2940.DOI:10.1016/S0304-3991(81)80175-1Search in Google Scholar

[27] H.K.D.H.Bhadeshia, A.R.Waugh: Acta Metall.30 (1982) 775784.DOI:10.1016/0001-6160(82)90075-XSearch in Google Scholar

[28] M.Peet, S.S.Babu, M.K.Miller, H.K.D.H.Bhadeshia: Scripta Mater.50 (2004) 12771281.DOI:10.1016/j.scriptamat.2004.02.024Search in Google Scholar

[29] C.Zener: Trans. Am. Inst. Min. Metall. Eng.167 (1946) 550595.Search in Google Scholar

[30] R.F.Hehemann, K.R.Kinsman, H.I.Aaronson: Metall. Trans.3 (1972) 10771094.DOI:10.1007/BF02642439Search in Google Scholar

[31] H.K.D.H.Bhadeshia, D.V.Edmonds: Acta Metall.28 (1980) 12651273.DOI:10.1016/0001-6160(80)90082-6Search in Google Scholar

[32] A.Ali, M.Ahmed, F.H.Hashmi, A.Q.Khan: Metall. Mater. Trans. A24 (1993) 21452150.DOI:10.1007/BF02648588Search in Google Scholar

[33] L.C.Chang, H.K.D.H.Bhadeshia: Mater. Sci. Technol. (1995) 874881.10.1179/mst.1995.11.9.874Search in Google Scholar

[34] D.Gaude-Fugarolas, P.J.Jacques: Modelling the kinetics of bainite transformation in steels, in: J.M.Howe, D.E.Laughlin, J.K.Lee, U.Dahmen, W.A.Soffa (Eds.): Solid-Solid Phase Trans. Inorg. Mater.2 (2005) 795800.Search in Google Scholar

[35] F.G.Caballero, M.J.Santofimia, C.Capdevila, C.Garcia-Mateo, C.Garcia de Andrés: ISIJ Internat46 (2006) 14791488.DOI:10.2355/isijinternational.46.1479Search in Google Scholar

[36] H.K.D.H.Bhadeshia: Acta Metall.29 (1981) 11171130.DOI:10.1016/0001-6160(81)90063-8Search in Google Scholar

[37] R.F.Hehemann: The bainite transformation, in: H.I.Aaronson, V.F.Zackay (Eds.): Phase Trans. (1970) 397432.Search in Google Scholar

Received: 2009-1-13
Accepted: 2009-9-9
Published Online: 2013-06-11
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Multiscale materials simulation: the maturing of a scientific concept
  5. Feature
  6. Atomistic modelling of materials with bond-order potentials
  7. Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
  8. Multiscale modeling of polymers at interfaces
  9. Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
  10. Basic
  11. Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
  12. Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
  13. Surface tension of liquid Al–Cu binary alloys
  14. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
  15. A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
  16. Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
  17. Applied
  18. Microstructure and properties of violin strings made of metastable austenitic steel
  19. Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
  20. Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
  21. Ball milling as a possible means to produce zinc based coatings
  22. Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
  23. Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
  24. Investigation of fatigue fracture of generator-rotor fan blades
  25. Notifications
  26. Personal
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110222/html
Scroll to top button