Home Ball milling as a possible means to produce zinc based coatings
Article
Licensed
Unlicensed Requires Authentication

Ball milling as a possible means to produce zinc based coatings

  • M.-N. Avettand-Fènoël , G. Reumont and P. Perrot
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Mechanical alloying of both steel strip and elemental Zn powder (with or without Fe powder) was performed in order to directly produce zinc based coatings on the surface of steel strip. Microstructures of coatings and milled powders were investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Metastable phases, in particular Zn supersaturated with Fe were synthesized during ball milling. Iron supersaturation in FeZn alloy is almost twice as high (4.5 at.% Fe in Zn) on the milled steel strip as in the ball milled powder (2.8 at.%). The latter values remain lower than the maximum Fe solubility in Zn allowed by thermodynamics. Subsequent annealing at 300 °C forms a Γ1 monophased coating which is not usually synthesized during batch galvanizing.


* Correspondence address, Professor Pierre Perrot Laboratoire de Métallurgie Physique et Génie des Matériaux, UMR CNRS 8517 Université de Lille 159655 Villeneuve d'Ascq, France Tel.: +33 320 434 922 Fax: +33 320 336 148

References

[1] A.R.Marder: Progress Mater. Sci.45 (2000) 191.10.1016/S0079-6425(98)00006-1Search in Google Scholar

[2] X.Zhang, H.Wang: J. Mater. Res.16 (2001) 3485.10.1557/JMR.2001.0479Search in Google Scholar

[3] X.Zhang, H.Wang, J.Narayan, C.C.Koch: Acta Mater.49 (2001) 1319.10.1016/S1359-6454(01)00051-9Search in Google Scholar

[4] X.Zhang, H.Wang, M.Kassem, J.Narayan, C.C.Koch: Scripta Mater.46 (2002) 661.10.1016/S1359-6462(02)00048-9Search in Google Scholar

[5] X.Zhang, H.Wang, R.O.Scattergood, J.Narayan, C.C.Koch: Acta Mater.50 (2002) 3995.10.1016/S1359-6454(02)00199-4Search in Google Scholar

[6] X.K.Zhu, X.Zhang, H.Wang, A.V.Sergueeva, A.K.Mukherjee, R.O.Scattergood, J.Narayan, C.C.Koch: Scripta Mater.49 (2003) 429.10.1016/S1359-6462(03)00297-5Search in Google Scholar

[7] S.Ozcan, B.Kaynar, M.M.Can, T.Firat: Mater. Sci. Eng. B121 (2005) 278.10.1016/j.mseb.2005.04.006Search in Google Scholar

[8] C.Suryanarayana: Progress Mater. Sci.46 (2001) 1.10.1016/S0079-6425(99)00010-9Search in Google Scholar

[9] D.Chen, Z.H.Chen, P.Y.Huang, H.D.Xuebao: Ziran Kexueban, 31 (2004) 12.Search in Google Scholar

[10] C.W.Pan, Y.H.Chang, C.C.Hsu, M.P.Hung: Jap. J. Appl. Phys., Part 1: Regular Papers, Short Notes & Review Papers33(1A) (1994) 122.10.1143/JJAP.33.122Search in Google Scholar

[11] A.Z.Salustiano, S.A.Loureiro, L.M.Tavares, Congresso Annual – Associacao Brasileira de Metalurgia e Materiais 59th (2004) 4546.Search in Google Scholar

[12] S.A.Loureiro, L.M.Tavares, A.Z.Salustiano, D.S.dos Santos: J. Phys. Chem. Solids68 (2007) 1845.10.1016/j.jpcs.2007.05.011Search in Google Scholar

[13] F.Zhou, Y.T.Chou: J. Mater. Res.17 (2002) 3230.10.1557/JMR.2002.0467Search in Google Scholar

[14] F.Zhou, Y.T.Chou, E.J.Lavernia, in: S. Ankem (Ed.), Science and technology of interfaces, Publisher: Minerals, metals & Materials Society, International Symposium Honoring the Contributions of Dr. Bhakta Rath, Proceedings of a Symposium held during the TMS Annual Meeting, Seattle, WA, United States (Feb. 17–21, 2002) 21.Search in Google Scholar

[15] F.Zhou, Y.T.Chou, E.J.Lavernia: Mater. Trans. A42 (2001) 1566.10.2320/matertrans.42.1566Search in Google Scholar

[16] J.C.de Lima, E.C.Borba, C.Paduani, V.H.F.dos Santos, T.A.Grandi, H.R.Rechenberg, I.Denicolo, M.Elmassalami, A.F.Barbosa: J. Alloys Compds234 (1996) 43.10.1016/0925-8388(95)02084-5Search in Google Scholar

[17] O.N.C.Uwakweh, Z.T.Liu, M.Boisson, Materials Research Society Symposium Proceedings, publisher: Materials Research Society 398 (Thermodynamics and Kinetics of Phase Transformations) (1996) 325.Search in Google Scholar

[18] Z.T.Liu, M.Boisson, O.N.C.Uwakweh: Met. Mater. Trans. A27 (1996) 2904.10.1007/BF02663839Search in Google Scholar

[19] Z.Liu, O.N.C.Uwakweh: Met. Mater. Trans. A28 (1997) 743.Search in Google Scholar

[20] A.Jordan, Z.Liu, O.N.C.Uwakweh: J. Mater. Res.13 (1998) 1177.10.1557/JMR.1998.0168Search in Google Scholar

[21] O.N.C.Uwakweh, Z.T.Liu, A.Jordan: Met. Mater. Trans. A31 (2000) 2739.10.1007/BF02830333Search in Google Scholar

[22] Y.Feutelais, B.Legendre, R.R.de Avillez: J. Alloys Compd., 346 (2002) 211.10.1016/S0925-8388(02)00664-3Search in Google Scholar

[23] H.A.Wriedt, Bull. Phase Diagram8 (1987) 166.10.1007/BF02873202Search in Google Scholar

[24] H.A.Wriedt, Bull. Phase Diagram9 (1988) 247.10.1007/BF02881275Search in Google Scholar

[25] R.M.German: Sintering Theory and Practice. John Wiley & Sons Inc., New York (1996).Search in Google Scholar

[26] B.P.Burton, P.Perrot: Phase Diagrams of Binary Iron Alloys, ASM Publ. (1989) 459.Search in Google Scholar

[27] Smithells Metals Reference Book7th edition, BrooksG.B. and BrandesE.A. editors, Heinemann-Butterworth, Oxford (1992).Search in Google Scholar

[28] V.Raghavan: J. Phase Equilib.24 (2003) 544.10.1361/105497103772084598Search in Google Scholar

[29] D.E.Solas, C.N.Tomé, O.Engler, H.R.Wenk: Acta Mater.49 (2001) 3791.10.1016/S1359-6454(01)00261-0Search in Google Scholar

[30] M.-N.Avettand-Fènoël, G.Reumont, F.Goodwin, P.Perrot, J.Foct: Int. J. Mat. Res. (former Z. Metallkd.)97 (2006) 1183.Search in Google Scholar

Received: 2008-6-6
Accepted: 2009-2-17
Published Online: 2013-06-11
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Multiscale materials simulation: the maturing of a scientific concept
  5. Feature
  6. Atomistic modelling of materials with bond-order potentials
  7. Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
  8. Multiscale modeling of polymers at interfaces
  9. Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
  10. Basic
  11. Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
  12. Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
  13. Surface tension of liquid Al–Cu binary alloys
  14. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
  15. A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
  16. Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
  17. Applied
  18. Microstructure and properties of violin strings made of metastable austenitic steel
  19. Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
  20. Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
  21. Ball milling as a possible means to produce zinc based coatings
  22. Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
  23. Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
  24. Investigation of fatigue fracture of generator-rotor fan blades
  25. Notifications
  26. Personal
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110216/html
Scroll to top button