Home Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy

  • Magnus Hörnqvist and Birger Karlsson
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The strain hardening of the Al-5.2Zn-1.2Mg alloy AA7030 in different conditions has been investigated. The dislocation related strengthening was described by the Voce equation and the quantitative effects of different superposition laws have been studied. All tempers, except the over-aged, suffer from plastic instability before the geometric Considère condition is reached. This was attributed primarily to the occurrence of shear failure due to dynamic strain ageing effects. For plastic strain levels below approximately 8 %, preceding the plastic instability, the results show that the saturation stress in the under and peak-aged tempers is independent of heat treatment, whereas the kinetics of structure formation differs. Using a linear superposition law in the under and peak aged tempers has negligible effects, whereas the use of Pythagorean addition for the over-aged temper significantly decreases the goodness-of-fit, although not to unacceptable levels. Furthermore, the naturally aged temper shows strong influence of dynamic precipitation.


* Correspondence address, Professor Birger Karlsson Materials and Manufacturing Technology Chalmers University of Technology SE-41296, Göteborg, Sweden Tel.: +46 0 31 772 1242 Fax: +46 0 31 772 1313 E-mail:

References

[1] L.M.Cheng, W.J.Poole, J.D.Embury, D.J.Lloyd: Metall. Mater. Trans.34 A (2003) 2473.10.1007/s11661-003-0007-2Search in Google Scholar

[2] S.Esmaeili, L.M.Cheng, A.Deschamps, D.J.Lloyd, W.J.Poole: Mater. Sci. Eng. A319–321 (2001) 461.10.1016/S0921-5093(01)01113-3Search in Google Scholar

[3] A.Deschamps, M.Niewacz, F.Bley, Y.Bréchet, J.D.Embury, L.Le Sinq, F.Livet, J.P.Simon: Phil. Mag. A79 (1999) 2485.10.1080/01418619908214295Search in Google Scholar

[4] A.Deschamps, F.Bley, F.Livet, D.Fabregue: Phil. Mag.83 (2003) 677.10.1080/0141861021000051091Search in Google Scholar

[5] I.Kovács, J.Lendvai, T.Ungár, Z.Rajkovitz: Phil. Mag. A48 (1983) 329.10.1080/01418618308234896Search in Google Scholar

[6] I.Kovács, J.Lendvai, T.Ungár, T.Turmezey, G.Groma: Acta Metall.25 (1977) 673.10.1016/0001-6160(77)90010-4Search in Google Scholar

[7] M.Tiryakioglu: Mater. Sci. Eng. A427 (2006) 154.10.1016/j.msea.2006.04.011Search in Google Scholar

[8] A.Deschamps, S.Esmaeili, W.J.Poole, M.Militzer: J. Phys. IV, 10 (2000) 151.10.1051/jp4:2000626Search in Google Scholar

[9] L.M.Cheng, S.Esmaeili, W.J.Poole, D.J.Lloyd: Mater. Sci. Forum396–402 (2002) 1013.Search in Google Scholar

[10] I.Kovacs, J.Lendvai, G.Vörös: Mater. Sci. Forum217–222 (1996) 1275.Search in Google Scholar

[11] I.Kovacs, J.Lendvai, G.Vörös: Phys. Stat. Sol. A153 (1996) 123.10.1002/pssa.2211530111Search in Google Scholar

[12] F.Barlat, J.Liu, J.C.Brem: Modelling. Simul. Mater. Sci. Eng.8 (2000) 435.10.1088/0965-0393/8/4/303Search in Google Scholar

[13] S.Li, O.Engler, P.Van Houtte: Modelling. Simul. Mater. Sci. Eng.13 (2005) 783.Search in Google Scholar

[14] Y.Estrin, H.Mecking: Acta Metall.32 (1984) 57.10.1016/0001-6160(84)90202-5Search in Google Scholar

[15] A.J.E.Foreman, M.J.Makin: Can. J. Phys.45 (1967) 511.Search in Google Scholar

[16] U.F.Kocks, in: P. Haasen (Ed.), Proc. 5th Int. Conf. on Strength of Metals and Alloys, vol. 3, (1979) 1661.10.1016/B978-1-4832-8412-5.50250-2Search in Google Scholar

[17] U.F.Kocks, A.S.Argon, M.F.Ashby: Progr. Mater. Sci.19 (1975) 225.Search in Google Scholar

[18] T.J.Koppenaal, D.Kuhlmann-Wilsdorf: Appl. Phys. Letters4 (1964) 59.10.1063/1.1753962Search in Google Scholar

[19] M.Hörnqvist, B.Karlsson: Mater. Sci. Tech.22 (2006) 213.10.1179/174328406X74284Search in Google Scholar

[20] H.Mecking, U.F.Kocks: Acta Metall.29 (1981) 1865.10.1016/0001-6160(81)90112-7Search in Google Scholar

[21] I.J.Polmear: Light alloys, 4th Ed., Butterworth-Heinemann, Oxford (2007).Search in Google Scholar

[22] J.C.Werenskiold, A.Deschamps, Y. Bréchet. Mater. Sci. Eng. A293 (2000) 267.10.1016/S0921-5093(00)01247-8Search in Google Scholar

[23] M.Dumont, W.Lefebvre, B.Doisneau-Cottignies, A.Deschamps: Acta Mater.53 (2005) 2881.10.1016/j.actamat.2005.03.004Search in Google Scholar

[24] A.Deschamps, L.Le Sinq, Y.Bréchet, J.D.Embury, M.Niewczas: Mater. Sci. Eng. A234–236 (1997) 477.10.1016/S0921-5093(97)00324-9Search in Google Scholar

[25] N.Ryum: Acta Metall.17 (1968) 821.10.1016/0001-6160(69)90101-1Search in Google Scholar

[26] I.Kovács, J.Lendvai, T.Ungár, Z.Rajkovits: Phil. Mag. A48 (1983) 329.10.1080/01418618308234896Search in Google Scholar

[27] F.Springer, A.Nortmann, C.Schwink: Phys. Stat. Sol. A170 (1998) 63.10.1002/(SICI)1521-396X(199811)170:1<63::AID-PSSA63><63::AID-PSSA63>3.0.CO;2-FSearch in Google Scholar

[28] N.Chung, J.D.Embury, J.D.Evensen, R.G.Hoagland, C.M.Sargent: Acta Metall.25 (1977) 377.10.1016/0001-6160(77)90229-2Search in Google Scholar

[29] A.Fjeldly, H.J.Roven: Metall. Mater. Trans. A31 (2000) 669.10.1007/s11661-000-0009-2Search in Google Scholar

[30] J.E.King, C.P.You, J.F.Knott: Acta Metall.20 (1981) 1553.10.1016/0001-6160(81)90037-7Search in Google Scholar

Received: 2008-4-10
Accepted: 2009-2-10
Published Online: 2013-06-11
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Multiscale materials simulation: the maturing of a scientific concept
  5. Feature
  6. Atomistic modelling of materials with bond-order potentials
  7. Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
  8. Multiscale modeling of polymers at interfaces
  9. Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
  10. Basic
  11. Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
  12. Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
  13. Surface tension of liquid Al–Cu binary alloys
  14. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
  15. A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
  16. Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
  17. Applied
  18. Microstructure and properties of violin strings made of metastable austenitic steel
  19. Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
  20. Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
  21. Ball milling as a possible means to produce zinc based coatings
  22. Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
  23. Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
  24. Investigation of fatigue fracture of generator-rotor fan blades
  25. Notifications
  26. Personal
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110220/html
Scroll to top button