Startseite Effect of heat treatment on microstructure and mechanical properties of Fe-5Cr-1.4B alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of heat treatment on microstructure and mechanical properties of Fe-5Cr-1.4B alloy

  • Jian Gu , Hanguang Fu , Yongping Lei und Shengqiang Ma
Veröffentlicht/Copyright: 16. Mai 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The microstructures and mechanical properties of a Fe-Cr-B alloy containing 1.4 wt.-% B and 5.0 wt.-% Cr were researched after different heat treatment processes. The results indicate that the as-cast microstructure of the Fe-5Cr-1.4B alloy consists of M2B (M = Fe, Cr), M7(C,B)3, α-Fe and γ-Fe. The netlike eutectic M2B phase is distributed in the matrix. After water quenching, the netlike eutectic M2B phase begins to fracture, the metallic matrix transforms into martensite and secondary M23(C,B)6 borocarbides are precipitated. When the quenching temperature exceeds 1050 °C, the number of precipitated secondary borocarbides is reduced. After quenching, the macro- and microhardness of the samples increase with the increase of temperature, and the hardness reaches a maximum value at 1050 °C. When the temperature exceeds 1050 °C, the hardness value will slightly decrease. After tempering treatment, the matrix precipitates as miniature secondary borocarbides, and the martensite begins to soften, and the hardness is lower compared to that quenched by heat treatment. The decreasing hardness tendency becomes more pronounced with the increase of the tempering temperature. Moreover, the impact toughness reaches its maximum value (7.35 J × cm−2) when the tempering temperature ranges at 500 °C.

Kurzfassung

Die Gefüge und mechanischen Eigenschaften einer Fe-Cr-B-Legierung mit 1,4 wt.-% B und 5,0 wt.-% Cr wurden nach verschiedenen Wärmebehandlungsprozessen erforscht. Die Ergebnisse weisen darauf hin, dass die Mikrostruktur im Gusszustand der Fe-5Cr-1.4B-Legierung aus M2B (M = Fe, Cr), M7(C,B)3, α-Fe und γ-Fe besteht. Die netzartige eutektische M2B-Phase ist in der Matrix verteilt. Nach dem Abschrecken in Wasser beginnt die netzartige eutektische M2B-Phase zu brechen, die metallische Matrix wandelt sich in Martensit um und es werden sekundäre M23(C, B)6 Borcarbide ausgeschieden. Wenn die Abschrecktemperatur 1050 °C überschreitet, reduziert sich die Anzahl der ausgeschiedenen Borcarbide. Nach dem Abschrecken nimmt die Makro- und die Mikrohärte der Proben mit steigender Temperatur zu und die Härte erreicht einen Maximalwert bei 1050 °C. Wenn die Temperatur 1050 °C überschreitet, nehmen die Härtewerte geringfügig ab. Nach dem Anlassen scheiden sich sekundäre Miniatur-Bockarbide aus der Matrix aus, der Martensit wird weicher und die Härte ist geringer als mit Abschreckbehandlung. Die Härteabnahme wird umso ausgeprägter, je mehr die Anlasstemperatur zunimmt. Darüber hinaus erreicht die Schlagzähigkeit ihren höchsten Wert, wenn die Anlasstemperatur bei 500 °C liegt.


*Correspondence Address, Dr. Hanguang Fu, School of Materials Science and Engineering, Beijing University of Technology, Number 100, Pingle Garden, Chaoyang District, Beijing 100124, P. R. China, E-mail:

Jian Gu, born in 1989, is a doctoral candidate of Beijing University of Technology, China. He obtained his bachelor degree at the School of Materials Science and Engineering of Beijing University of Technology in 2011. His research interests mainly focus on the control of microstructure and property of metal materials.

Dr. Hanguang Fu, born in 1964, is a researcher at the Beijing University of Technology, China. He obtained his PhD at the School of Materials Science and Engineering at Xi'an Jiaotong University in 2004. His research interests mainly focus on solidification control, casting technology, development of roll and wear resistant materials. By now, he has published over 100 technical papers and holds more than 80 invention patents in China.

Dr. Shengqiang Ma, born in 1982, is a lecturer of Xi'an Jiaotong University, China. He obtained his PhD at the School of Materials Science and Engineering at Xi'an Jiaotong University in 2012. His research interests mainly focus on solidification control, casting technology and heat treatment. By now, he has published over 20 technical papers.

Prof. Dr. Yongping Lei, born in 1957, is Professor at Beijing University of Technology, China. He obtained his PhD at the School of Materials Science and Engineering at Xi'an Jiaotong University in 1994. His research interests mainly focus on solidification control, welding and wear resistant materials. By now, he has published over 100 technical papers and holds more than 50 invention patents in China.


References

1 I. G.Slys, V. I.Berezanskaya, I. A.Kossko, A. P.Pomytkin: Development of new corrosion-resistant and wear-resistant materials for use in aggressive hydrogen medium, International Journal of Hydrogen Energy26 (2001), pp. 53153610.1016/S0360-3199(00)00087-2Suche in Google Scholar

2 M. M.Arikan, H.Cimenoglu, E. S.Kayali: The effect of titanium on the abrasion resistance of 15Cr-3Mo white cast iron, Wear247 (2001), pp. 23123510.1016/S0043-1648(00)00523-8Suche in Google Scholar

3 D.Li, L. G.Liu, Y. K.Zhang, C. L.Ye, X. J.Ren, Y. L.Yang, Q. X.Yang: Phase diagram calculation of high chromium cast irons and influence of its chemical composition, Materials and Design30 (2009) pp. 34034510.1016/j.matdes.2008.04.061Suche in Google Scholar

4 A.Wiengmoon, J. T. H.Pearce, T.Chairuangsri: Relationship between microstructure, hardness and corrosion resistance in 20#160;wt.-% Cr, 27#160;wt.-% Cr and 36#160;wt.-% Cr high chromium cast irons, Materials Chemistry and Physics125 (2011), pp. 73974810.1016/j.matchemphys.2010.09.064Suche in Google Scholar

5 E.Albertin, F.Beneduce. M.Matsumoto, I.Teixeira: Optimizing heat treatment and wear resistance of high chromium cast irons using computational thermodynamics, Wear271 (2011), pp. 1813181810.1016/j.wear.2011.01.079Suche in Google Scholar

6 K. F.Pinho, C.Boher, C.Scandian: Effect of molybdenum and chromium contents on sliding wear of high-chromium white cast iron at high temperature, Lubrication Science25 (2013), pp. 15316210.1002/ls.1171Suche in Google Scholar

7 D. M.Fu, H. G.Fu, L. M.Huang: The influence of quenching temperature on microstructure and hardness of Fe-B-C casting alloy, Heavy Casting and Forging5 (2007), pp. 1922 (in Chinese)Suche in Google Scholar

8 C. Q.Guo, S. Z.Gao: New Fe-based wear-resistant material FCB alloys, Foundry China53 (2004), pp. 761764 (in Chinese)Suche in Google Scholar

9 H. G.Fu: A study of abrasion resistant cast Fe-B-C alloy, Acta Metallurgica Sinica42 (2006), No. 5, pp. 545548 (in Chinese)Suche in Google Scholar

10 Z. L.Liu, Y. X.Li, X.Chen, K. H.Hu: Microstructure and mechanical properties of high boron white cast iron, Materials Science and Engineering A486 (2008), pp. 11211610.1016/j.msea.2007.10.017Suche in Google Scholar

11 S. Q.Ma, J. D.Xing, G. F.Liu, D. W.Yi, H. G.Fu, J. J.Zhang, Y. F.Li: Effect of chromium concentration on microstructure and properties of Fe-3.5B alloy, Materials Science and Engineering A527 (2010), pp. 6800680810.1016/j.msea.2010.07.066Suche in Google Scholar

12 Z. L.Liu, X.Chen, Y. X.Li, K. H.Hu: High boron iron-based alloy and its modification, Journal of Iron and Steel Research, International16 (2009), pp. 374210.1016/S1006-706X(09)60041-8Suche in Google Scholar

13 X.Chen, Y. X.Li: Effect of heat treatment on microstructure and mechanical properties of high boron white cast iron, Materials Science and Engineering A528 (2010), pp. 77077510.1016/j.msea.2010.09.092Suche in Google Scholar

14 Y. C.Peng, H. J.Jin, J. H.Liu, G. L.Li: Effect of boron on the microstructure and mechanical properties of carbidic austempered ductile iron, Materials Science and Engineering A529 (2011), pp. 32132510.1016/j.msea.2011.09.034Suche in Google Scholar

15 C. Q.Guo, P. M.Kelly: The non-equilibrium segregation of boron in matrix grains in Fe-Cr-B alloys, Journal of Baotou University of Iron and Steel Technology, 23 (2004), pp. 134139 (in Chinese)Suche in Google Scholar

16 C. Q.Guo, P. M.Kelly: Boron solubility in Fe-Cr-B cast irons, Materials Science and Engineering A.352 (2003), pp. 404510.1016/S0921-5093(02)00449-5Suche in Google Scholar

17 H. G.Fu, Q.Xiao, J. C.Kuang, Z. Q.Jiang, J. D.Xing: Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe-B cast steel, Materials Science and Engineering A.466 (2007), pp. 16016510.1016/j.msea.2007.02.032Suche in Google Scholar

18 P. F.Wu, X. D.Liu, G. D.Che, Y.Lu, J. M.Wang, J. F.Li: Effects of heat treatment process on mechanical properties and microstructure of ZG30Cr2Mn2Si, Foundry China57 (2008), pp. 6365 (in Chinese)Suche in Google Scholar

19 Z. Q.Jiang, H. G.Fu, J.Yang, J. H.Wang: Effect of quenching temperature on microstructure and hardness of high boron cast steel, Transactions of Materials and Heat Treatment28 (2007), pp. 158160 (in Chinese)Suche in Google Scholar

20 S. H.Hao: Modern Cast Iron Science, Beijing, Metallurgical Industry Press (2004) (in Chinese)Suche in Google Scholar

21 H. G.Fu: Study and application of cast steel containing boron, Foundry Technology27 (2006), pp. 8789 (in Chinese)Suche in Google Scholar

Published Online: 2018-05-16
Published in Print: 2015-01-05

© 2015, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. A simple procedure for estimating SN-lines for crack initiation from SN-lines for total failure*
  5. Modellbasierte Korrelation zwischen dem elektrischen Widerstand und der Versetzungsstruktur des ermüdungsbeanspruchten ICE-Radstahls R7
  6. Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy
  7. Effect of heat treatment on microstructure and mechanical properties of Fe-5Cr-1.4B alloy
  8. Interface characterization of friction welded low carbon steel and copper alloys
  9. Field test methods for aluminum gas cylinders
  10. Application of the Taguchi method for parameter optimization of the surface grinding process
  11. A discrete dislocation technique for fatigue microcracks (Part I)
  12. A discrete dislocation technique for fatigue microcracks (Part II)
  13. Synchrotron X-ray CT of rose peduncles – evaluation of tissue damage by radiation*
  14. Surface roughness analysis and optimization for the CNC milling process by the desirability function combined with the response surface methodology
  15. Design, manufacture and analysis of composite epoxy material with embedded silicon carbide (SiC) and alumina (Al2O3) nanoparticles/fibers
  16. Performance of organic and inorganic substances as inhibitors for chloride-induced corrosion in concrete
  17. Fillet welding of austenitic stainless steel using the double channel shielding gas method with cored wire
  18. Applying quadraphonic transmission ultrasonic defectoscopy on standard aluminum materials
  19. Kalender/Calendar
  20. Kalender
Heruntergeladen am 19.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110676/html
Button zum nach oben scrollen