Home Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy

  • Ş. Hakan Atapek
Published/Copyright: May 16, 2018
Become an author with De Gruyter Brill

Abstract

In this study, the effect of cobalt on the aging kinetics of a precipitation hardening CuCoNiBe alloy was studied by variations in hardness and electrical conductivity. Based on the linear relationship between electrical conductivity and volume fraction of the precipitates, phase transformation kinetics of the alloys having different cobalt contents were formulated using the Avrami equation. It was concluded that (i) aging kinetics slowed down in high cobalt alloyed copper alloy, (ii) the calculated electrical conductivity values using Avrami equation were in good agreement with the experimental data, and (iii) aged alloys had higher hardness and electrical conductivity than the as-cast ones.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurden die Auswirkungen von Kobalt auf die Alterungskinetik einer ausscheidungshärtenden CuCoNiBeLegierung untersucht, und zwar in Bezug auf Härte und elektrische Leitfähigkeit. Basierend auf einem linearen Zusammenhang zwischen der elektrischen Leitfähigkeit und dem Volumenanteil der Ausscheidungen wurde die Phasenkinetik der Legierungen mit einem unterschiedlichen Kobaltgehalt mittels der Avrami-Funktion formuliert. Es stellte sich heraus, dass (i) sich die Alterungskinetik in der hochkobaltlegierten Kupferlegierung verlangsamt, (ii) sich die berechneten elektrischen Leitfähigkeitswerte in guter Übereinstimmung mit experimentellen Daten befinden und (iii) die gealterten Legierungen eine höhere Härte und Leitfähigkeit aufwiesen als diejenigen im Gußzustand.


*Correspondence Address, Dr. Ş. Hakan Atapek, Department of Metallurgical and Materials Engineering, Umuttepe Campus, Kocaeli University, 41380 Kocaeli, Turkey, E-mail:

Dr. Ş. Hakan Atapek, born in 1979, graduated from Kocaeli University, Department of Metallurgical and Materials Engineering, Turkey. He received his MSc and PhD from Kocaeli University, Department of Metallurgical and Materials Engineering. He is currently working as Assistant Professor at Kocaeli University in the Department of Metallurgical and Materials Engineering. He was also a postdoctoral researcher at Karlsruhe Institute of Technology, Institut für Angewandte Materialien-Werkstoffkunde, Germany, in May 2012 – May 2013 and studied the physical metallurgy of precipitation hardenable copper alloys. His interests are in the metallic materials, materials characterization and fractography.


References

1 N. N.: High Conductivity Coppers for Electrical Engineering, Copper Development Association, CDA Publication122, UK (1998)Search in Google Scholar

2 H. A.Kuhn, I.Altenberger, A.Käufler, H.Hölzl, M.Fünfer: Properties of high performance alloys for electromechanical connectors, copper alloys – early applications and current performance – enhancing processes, ISBN: 978-953-51-0160-4, (2012) 10.5772/35148Search in Google Scholar

3 J.Langer: Copper Alloys for Connectors, Springs and Lead Frames, Diehl Metall, Sundwiger Messingwerk, Sundwig, Germany (2000)Search in Google Scholar

4 S.Constantinescu, A.Popa, J. R.Groza, I.Bock: New high-temperature copper alloys, Journal of Materials Engineering and Performance5 (1996), pp. 69569810.1007/BF02646904Search in Google Scholar

5 M.Li, J. K.Heuer, J. F.Stubbins, D. J.Edwards: Fracture behavior of high-strength, high-conductivity copper alloys, Journal of Nuclear Materials283–287 (2000), pp. 97798110.1016/S0022-3115(00)00316-0Search in Google Scholar

6 W.Ozgowicz, E.Kalinowska-Ozgowicz, B.Grzegorczyk: Thermomechanical treatment of low-alloy copper alloys of the kind CuCo2Be and CuCo1NiBe, Journal of Achievements in Materials and Manufacturing Engineering46 (2011), pp. 161168Search in Google Scholar

7 M.Jovanović, B.Djurić, D.Drobnjak, O.Nešić and R.Kostić: Aging of Cu-Be alloys with and without cobalt, Materials Science and Technology2 (1985), pp. 122128Search in Google Scholar

8 L.Yagmur: Effect of microstructure on internal friction and Young's modulus of aged Cu-Be alloy, Materials Science and Engineering A523 (2009), pp. 656910.1016/j.msea.2009.05.047Search in Google Scholar

9 L.Yagmur, O.Duygulu, B.Aydemir: Investigation of metastable γ’ precipitate using HRTEM in aged Cu-Be alloy, Materials Science and Engineering A528 (2011), pp. 4147415110.1016/j.msea.2011.01.114Search in Google Scholar

10 H.Tsubakino, R.Nozato, A.Yamamoto: Precipitation sequence for simultaneous continuous and discontinuous modes in Cu-Be binary alloy, Materials Science and Technology9 (1993), pp. 28829410.1179/mst.1993.9.4.288Search in Google Scholar

11 H.Chandler: Metallurgy for the Non-Metallurgist, ASM International, Materials Park, Ohio, USA (1998)Search in Google Scholar

12 M.Li, S. J.Zinkle: Physical and mechanical properties of copper and copper alloys, Comprehensive Nuclear Materials4 (2012), pp. 66769010.1016/B978-0-08-056033-5.00122-1Search in Google Scholar

13 H.Fernee, J.Nairn, A.Atrens: Precipitation hardening of Cu-Fe-Cr alloys, Part I: mechanical and electrical properties, Journal of Materials Science36 (2001), pp. 2711271910.1023/A:1017916930459Search in Google Scholar

14 G.Durashevich, V.Cvetkovski, V.Jovanovich: Effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy, Bulletin of Materials Science25 (2002), pp. 596210.1007/BF02704596Search in Google Scholar

15 K. R.Anderson, J. R.Groza: Microstructural size effects in high-strength high-conductivity Cu-Cr-Nb alloys, Metallurgical and Materials Transactions A32 (2001), pp. 1211122410.1007/s11661-001-0130-xSearch in Google Scholar

16 A. D.Ivanov, A. K.Nikolaev, G. M.Kalinin, M. E.Rodin: Effect of heat treatments on the properties of CuCrZr alloys, Journal of Nuclear Materials307–311 (2002), pp. 67367610.1016/S0022-3115(02)01110-8Search in Google Scholar

17 S.Suzuki, N.Shibutani, K.Mimura, M.Isshiki, Y.Waseda: Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling, Journal of Alloys and Compounds417 (2006), pp. 11612010.1016/j.jallcom.2005.09.037Search in Google Scholar

18 G.Hagino, H.Eguchi, Y.Takayama, H.Kato: Effects of aging parameters on the mechanical properties in Corson alloy system with high contents of Ni and Si, Materials Science Forum654–656 (2010), pp. 2568257110.4028/www.scientific.net/MSF.654-656.2568Search in Google Scholar

19 P.Liu, B. X.Kang, X. G.Cao, J. L.Huang, H. C.Gu: Strengthening mechanisms in a rapidly solidified and aged Cu-Cr alloy, Journal of Materials Science35 (2000), pp. 1691169410.1023/A:1004760014886Search in Google Scholar

20 H.Cho, B. S.Lee, B. H.Kang, K. Y.Kim: Ageing behavior of Cu-Ag alloys, Advanced Materials Research47–50 (2008), pp. 10511054Search in Google Scholar

21 J.Lei, P.Liu, X.Jing, D.Zhao, J.Huang: Aging kinetics in a CuNiSiCr alloy, Journal of Materials Science and Technology20 (2004), pp. 727730Search in Google Scholar

22 Q.Lei, Z.Li, Z. Y.Pan, M. P.Wang, Z.Xiao, C.Chen: Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging, Transactions of Nonferrous Metals Society of China20 (2010), pp. 1006101110.1016/S1003-6326(09)60249-1Search in Google Scholar

23 Y.Mishima, T.Okuba, R.Shiromizu: Ageing, reversion and reageing of copper-beryllium alloys, Transactions of the Japan Institute of Metals24 (1983), pp. 674680Search in Google Scholar

24 M.Miki, Y.Ogimo: Effect of Co, Ni and Ti additions on the cellular precipitation in Cu-2%Be alloy, Materials Transactions35 (1994), pp. 16116710.2320/matertrans1989.35.161Search in Google Scholar

Published Online: 2018-05-16
Published in Print: 2015-01-05

© 2015, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. A simple procedure for estimating SN-lines for crack initiation from SN-lines for total failure*
  5. Modellbasierte Korrelation zwischen dem elektrischen Widerstand und der Versetzungsstruktur des ermüdungsbeanspruchten ICE-Radstahls R7
  6. Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy
  7. Effect of heat treatment on microstructure and mechanical properties of Fe-5Cr-1.4B alloy
  8. Interface characterization of friction welded low carbon steel and copper alloys
  9. Field test methods for aluminum gas cylinders
  10. Application of the Taguchi method for parameter optimization of the surface grinding process
  11. A discrete dislocation technique for fatigue microcracks (Part I)
  12. A discrete dislocation technique for fatigue microcracks (Part II)
  13. Synchrotron X-ray CT of rose peduncles – evaluation of tissue damage by radiation*
  14. Surface roughness analysis and optimization for the CNC milling process by the desirability function combined with the response surface methodology
  15. Design, manufacture and analysis of composite epoxy material with embedded silicon carbide (SiC) and alumina (Al2O3) nanoparticles/fibers
  16. Performance of organic and inorganic substances as inhibitors for chloride-induced corrosion in concrete
  17. Fillet welding of austenitic stainless steel using the double channel shielding gas method with cored wire
  18. Applying quadraphonic transmission ultrasonic defectoscopy on standard aluminum materials
  19. Kalender/Calendar
  20. Kalender
Downloaded on 19.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110669/html
Scroll to top button