Interface characterization of friction welded low carbon steel and copper alloys
-
Ugur Caligulu
and Mustafa Acik
Abstract
In this study, the interface characterization of friction welded AISI 1010 low carbon steel and copper alloys was investigated. The friction welding tests were performed by using a direct drive type friction welding machine. After friction welding, interface regions of the welded specimens were examined by optical microscopy, SEM-EDS, and X-ray analysis to determine the microstructural changes. Microhardness and tensile tests were conducted to determine mechanical properties of the welded specimens. The experimental results indicated that AISI 1010 low carbon steel could be joined to copper using the friction welding technique for achieving a weld with sufficient strength. Tensile strength values also confirmed this result and intermetallic phases did not occur at the interface.
Kurzfassung
In dieser Studie wurden die Grenzflächen von Reibschweißungen zwischen kohlenstoffarmem Stahl AISI 1010 und Kupferlegierungen charakterisiert. Die Reibschweißversuche erfolgten mit einer Reibschweißanlage mit Direktantrieb. Nach dem Reibschweißen wurden die Regionen der Grenzflächen der geschweißten Proben mittels Lichtmikroskopie, REM-EDS und Röntgenanalyse untersucht, um die aufgetretenen mikrostrukturellen Veränderungen zu bestimmen. Mikrohärte und Zugversuche wurden durchgeführt, um die mechanischen Eigenschaften der geschweißten Proben zu bestimmen. Die experimentellen Ergebnisse zeigten, dass mit dem Reibschweißverfahren kohlenstoffarmer Stahl AISI 1010 mit Kupfer gefügt werden kann und eine ausreichende Festigkeit der Schweißung erreicht wird. Die Werte der Zugfestigkeit bestätigten dieses Ergebnis. An der Grenzfläche traten keine intermetallischen Phasen auf.
References
1 İ.Kırık, N.Özdemir: Weldability and joining characteristics of AISI 420/AISI 1020 steels using friction welding, International Journal of Materials Research, 104 (8) (2013), pp. 769–77510.3139/146.110917Search in Google Scholar
2 N.Özdemir, F.Sarsılmaz, A.Hasçalık: Effect of rotational speed on interface properties of frictional welded AISI-304L to 4340 steel, Materials and Design, 28 (2007), pp. 301–30710.1016/j.matdes.2005.06.011Search in Google Scholar
3 Welding Handbook, Welding Processes, Volume 2, 8th Edition, Copyright by the American Welding Society Inc., Miamis, (1997), pp. 739–761Search in Google Scholar
4 R. E.Chalmers: The Friction Welding Advantage, Manufacturing Engineering, 126 (2001), pp. 64–65Search in Google Scholar
5 N.Özdemir: Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed, Materials Letters55 (2005), pp. 2504–250910.1016/j.matlet.2005.03.034Search in Google Scholar
6 D. E.Spindler: What industry needs to know friction welding, Welding Journal (1994), pp. 37–42Search in Google Scholar
7 İ.Kırık, N.Özdemir, U.Caligulu: Effect of particle size and volume fraction of the reinforcement on the microstructure and mechanical properties of friction welded MMC to AA 6061 aluminum alloy, Kovove Materials, 51 (4) (2013), pp. 221–22710.4149/km.2013.4.221Search in Google Scholar
8 P.Sathiya, S.Aravindan, A. NoorulHaq: Some experimental investigations on friction welded stainless steel joints, Materials and Design, 29 (2007), pp. 1099–110910.1016/j.matdes.2007.06.006Search in Google Scholar
9 İ.Kirik, N.Özdemir, F.Sarsilmaz: Microstructure and mechanical behaviour of friction welded AISI 2205/AISI 1040 steel joints, Material Testing, 54 (10) (2012), pp. 683–68810.3139/146.110917Search in Google Scholar
10 M. B.Uday, M. N. AhmadFauzi, H.Zuhailawati, A. B.Ismail: Advances in friction welding process: a review, Science and Technology of Welding and Joining, 15 (7) (2010), pp. 534–55810.1179/136217110X12785889550064Search in Google Scholar
11 J.Domblesky, F. F.Kraft: Metallographic evaluation of welded forging preforms, Journal of Materials Processing Technology, 191 (2007), pp. 82–8610.1016/j.jmatprotec.2007.03.077Search in Google Scholar
12 S.Celik, I.Ersozlu: Investigation of the mechanical properties and microstructure of friction welded joints between AISI 4140 and AISI 1050 steels, Materials and Design, 30 (2009), pp. 970–97610.1016/j.matdes.2008.06.070Search in Google Scholar
13 S.Çelik, D.Dinç, R.Yaman, I.Ay: An investigation on weldability of AISI 304 and AISI 1040 steels on friction welding, Practical Metallography, 47 (4) (2010), pp. 188–20510.3139/147.110040Search in Google Scholar
14 S. D.Meshram, T.Mohandas, G. MadhusudhanReddy: Friction welding of dissimilar pure metals, Journal of Materials Processing Technology, 184 (2008), pp. 330–33710.1016/j.jmatprotec.2006.11.123Search in Google Scholar
15 M.Şahin: Evaluation of the joint interface properties of austenitic stainless steels (AISI 304) joined by friction welding, Materials and Design28 (2007), pp. 2244–225010.1016/j.matdes.2006.05.031Search in Google Scholar
16 I.Ay, S.Celik, I.Celik, The comparison of friction and diffusion welding features of aluminium and copper rods, Denizli Materials Symposium, Denizli, Turkey, April 26–28, (2000)Search in Google Scholar
17 M.Yılmaz, M.Çöl, M.Acet: Interface properties of aluminum/steel friction-welded components, Material Characterization49 (2002), pp. 421–42910.1016/S1044-5803(03)00051-2Search in Google Scholar
18 M.Şahin, H. E.Akata: An experimental study on friction welding of medium carbon and austenitic stainless steel components, Indust. Lubricat. Tribol.56 (2004), pp. 122–12910.1108/00368790410524074Search in Google Scholar
19 H.Ochi, G.Kawai, Y.Yamamoto, Y.Suga: Tensile strength of friction welded joints of copper alloys to steels, Proceedings of the eighteenth International Offshore and Polar Engineering Conference Vancouver, BC, Canada, July 6–11, (2008)Search in Google Scholar
20 R.Kara, H.Virdil, F.Çolak, S.Tasgetiren: The investigation of mechanical properties couples of Fe-Cu with diffusion bonding, Electronic Journal of Machine Technologies4 (2006), pp. 45–52Search in Google Scholar
21 A.Kurt, I.Uygur, E.Mutlu: The effect of allotropic transformation temperature in diffusion welded low carbon steel and copper, Metallofiz., Noveishie Technol.28 (1) (2006), pp. 39–52Search in Google Scholar
22 Y.Imani, M. K.Besharati, R.Abdi: Friction stir welding between copper and 304L stainless steel, Conference for Materials Science and Technology, Joining of Advanced and Specialty Materials (JASM XI), (2009)Search in Google Scholar
23 A.Kurt, I.Uygur, U.Paylasan: Effect of friction welding parameters on mechanical and microstructural properties of dissimilar AISI 1010-ASTM B22 joints, Welding Journal90 (2011), pp. 102–106Search in Google Scholar
24 S.Çelik: Microstructure and mechanical properties of friction welding of copper and AISI 1040 steel, Electronic Journal of Machine Technologies, 9 (4) (2012), pp. 11–20Search in Google Scholar
25 A. N.Dobrovidov: Selection of optimum conditions for the friction welding of high speed steel 45, Weld Prod, 22 (3) (1975), pp. 22–26Search in Google Scholar
26 A.Ishibashi, S.Ezoe, S.Tanaka: Studies on friction welding of carbon and alloy steels, Bulletin of the JSME, 26 (216) (1983), p. 108010.1299/jsme1958.26.1080Search in Google Scholar
27 P.Sathiya, S.Aravindan, A. NoorulHaq: Mechanical and metallurgical properties of friction welded AISI 304 austenitic stainless steel, Int J Adv Manuf Technol, 26 (5–6) (2005), p. 50510.1007/s00170-004-2008-6Search in Google Scholar
28 D.Ananthapadmanaban, V. SeshagiriRao, N.Abraham: A study of mechanical properties of friction welded mild steel to stainless steel joints, Materials and Design, 30 (7) (2009), p. 264210.1016/j.matdes.2008.10.030Search in Google Scholar
29 V. V.Satyanarayana, G. MadhusudhanReddy, T.Mohandas: Dissimilar metal friction welding of austenitic ferritic stainless steels, Journal of Materials Processing Technology, 160 (2) (2005), p. 12810.1016/j.jmatprotec.2004.05.017Search in Google Scholar
30 H.Ates, M.Turker, A.Kurt: Effect of friction pressure on the properties of friction welded MA956 iron based superalloy, Materials and Design, 28 (3) (2007), p. 94810.1016/j.matdes.2005.09.015Search in Google Scholar
31 I.Kirik, N.Ozdemir, E. H.Firat, U.Caligulu: Optimization of tensile strength of friction welded AISI 1040 and AISI 304L steels according to statistics analysis (ANOVA), Material Testing, 55 (6) (2013), pp. 435–44110.3139/120.110455Search in Google Scholar
32 R.Paventhan, P. R.Lakshminarayanan, V.Balasubramanian: Optimization of friction welding process parameters for joining carbon steel and stainless steel, Journal of Iron and Steel Research, International, 19 (1) (2012), pp. 66–7110.1016/S1006-706X(12)60049-1Search in Google Scholar
33 S.Mercan, N.Özdemir: A couple of AISI 2205/AISI 1020 material combination with friction welding method, NWSA-Technological Applied Sciences, 2A0080 8 (2) (2013), pp. 18–3410.12739/NWSA.2013.8.2.2A0080Search in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- A simple procedure for estimating SN-lines for crack initiation from SN-lines for total failure*
- Modellbasierte Korrelation zwischen dem elektrischen Widerstand und der Versetzungsstruktur des ermüdungsbeanspruchten ICE-Radstahls R7
- Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy
- Effect of heat treatment on microstructure and mechanical properties of Fe-5Cr-1.4B alloy
- Interface characterization of friction welded low carbon steel and copper alloys
- Field test methods for aluminum gas cylinders
- Application of the Taguchi method for parameter optimization of the surface grinding process
- A discrete dislocation technique for fatigue microcracks (Part I)
- A discrete dislocation technique for fatigue microcracks (Part II)
- Synchrotron X-ray CT of rose peduncles – evaluation of tissue damage by radiation*
- Surface roughness analysis and optimization for the CNC milling process by the desirability function combined with the response surface methodology
- Design, manufacture and analysis of composite epoxy material with embedded silicon carbide (SiC) and alumina (Al2O3) nanoparticles/fibers
- Performance of organic and inorganic substances as inhibitors for chloride-induced corrosion in concrete
- Fillet welding of austenitic stainless steel using the double channel shielding gas method with cored wire
- Applying quadraphonic transmission ultrasonic defectoscopy on standard aluminum materials
- Kalender/Calendar
- Kalender
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- A simple procedure for estimating SN-lines for crack initiation from SN-lines for total failure*
- Modellbasierte Korrelation zwischen dem elektrischen Widerstand und der Versetzungsstruktur des ermüdungsbeanspruchten ICE-Radstahls R7
- Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy
- Effect of heat treatment on microstructure and mechanical properties of Fe-5Cr-1.4B alloy
- Interface characterization of friction welded low carbon steel and copper alloys
- Field test methods for aluminum gas cylinders
- Application of the Taguchi method for parameter optimization of the surface grinding process
- A discrete dislocation technique for fatigue microcracks (Part I)
- A discrete dislocation technique for fatigue microcracks (Part II)
- Synchrotron X-ray CT of rose peduncles – evaluation of tissue damage by radiation*
- Surface roughness analysis and optimization for the CNC milling process by the desirability function combined with the response surface methodology
- Design, manufacture and analysis of composite epoxy material with embedded silicon carbide (SiC) and alumina (Al2O3) nanoparticles/fibers
- Performance of organic and inorganic substances as inhibitors for chloride-induced corrosion in concrete
- Fillet welding of austenitic stainless steel using the double channel shielding gas method with cored wire
- Applying quadraphonic transmission ultrasonic defectoscopy on standard aluminum materials
- Kalender/Calendar
- Kalender