Design, manufacture and analysis of composite epoxy material with embedded silicon carbide (SiC) and alumina (Al2O3) nanoparticles/fibers
-
Saad M. Aldosari
, Hassan S. Hedia , Mostafa A. Hamed and Usama A. Khashaba
Abstract
The main objective of the presented study is to improve the performance of composite structures by introducing nanoparticles/fibers in the epoxy resin. The literature on this issue showed shortcomings in the investigations of such materials. Most of the investigations in this field are to enhance the mechanical properties of epoxy materials, which cannot be used alone for high performance structural applications due to their low mechanical properties. In the present work, the epoxy resin was modified with these different types of nanofillers such as silicon carbide (SiC) and alumina (Al2O3) nanoparticles. The nanophased epoxy was used to fabricate different types of nanocomposites as well as nano-hybridized glass fiber reinforced composite laminates. Therefore, nine different advanced materials have been fabricated including two nanocomposite materials (SiC/E and Al2O3/E), two quasi-isotropic nano-hybridized composite laminates (QI-GFR/SiC/E and QI-GFR/Al2O3/E), two unidirectional nano-hybridized composite laminates (UD-GFR/SiC/E and UD-GFR/Al2O3/E), and three control panels manufactured without nanofillers (neat epoxy, QI-GFR/E, UD-GFR/E). The materials were characterized under tension and compression. The results showed improvements in the tensile and compressive properties (strength and modulus) of the fabricated nanocomposites (SiC/E, and Al2O3/E) compared with neat epoxy. The hybridized composite laminate with Al2O3 showed high improvements in its mechanical properties compared to the composite laminates without nanofillers. In contrast, discouraging mechanical properties were observed for SiC hybridized composite laminate. Due to the many variables studied in the present work, the literature list will be long. The investigated parameters include nanofillers, nanocomposites, nano-hybridized advanced composite laminates, mechanical properties, glass transition temperature (Tg), bolted joint parameters and sonication parameters.
Kurzfassung
Das Hauptziel des diesem Beitrag zugrundeliegenden Forschungsprojektes besteht darin, die Performanz von Kompositstrukturen durch die Einarbeitung von Nanopartikeln/Fasern im Epoxidharz zu verbessern. Die Literatur weist zu diesem Aspekt Lücken bei der Untersuchung solcher Werkstoffe auf. Die meisten Untersuchungen auf diesem Gebiet zielen auf eine Steigerung der mechanischen Eigenschaften der Epoxidmaterialien ab, die aber für High-Performance-Anwendungen aufgrund ihrer niedrigen mechanischen Eigenschaften nicht allein verwendet werden können. In der diesem Beitrag zugrundeliegenden Arbeit wurde das Epoxidharz mit verschiedenen Nanofüllern modifiziert, die Siliziumcarbid und Aluminiumoxid enthalten. Das nanostrukturierte Epoxid wurde verwendet, um drei verschiedene Typen von Nanokompositen sowie nano-hydridisierte glasfaserverstärkte Kompositlaminate herzustellen. Deshalb wurden neun verschiedene Materialien hergestellt, die zwei Nanokompositwerkstoffe (SiC/E und Al2O3/E), zwei quasi-isotrope nano-hybridisierte Kompositlaminate (QI-GFR/SiC/E und QI-GFR/Al2O3/E), zwei unidirektionale nano-hybridisierte Kompositlaminate (UD-GFR/SiC/E und UD-GFR/Al2O3/E) sowie drei Kontrolltafeln ohne Nanofüller (reines Epoxid, QI-GFR/E und UD-GFR/E) beinhalteten. Die Materialien wurden bezüglich ihrer Zug- und Druckeigenschaften charakterisiert. Als Ergebnis zeigten sich Verbesserungen in den Zug- und Druckeigenschaften (Festigkeit und Modulus) der so hergestellten Nanokomposite (SiC/E und Al2O3/E) im Vergleich mit dem puren Epoxid. Die hybridisierten Kompositlaminate mit Al2O3 zeigten große Verbesserungen in ihren mechanischen Eigenschaften im Vergleich mit den Kompositen ohne Nanofüller. Im Gegensatz dazu wurden entmutigende mechanische Eigenschaften für die SiC-hybridisierten Kompositlaminate beobachtet.
References
1 N.Chisholm, H.Mahfuz, V. K.Rangari, A.Ashfaq, S.Jeelani: Fabrication and mechanical characterization of carbon/SiC epoxy nanocomposites, Composite Structures67 (2005), pp. 115–12410.1016/j.compstruct.2004.01.010Search in Google Scholar
2 K.Tao, S.Yang, J. C.Grunlan, Y.-S.Kim, B.Dang, Y.Deng, R. L.Thomas, B. L.Wilson, X.Wei: Effects of carbon nanotube fillers on the curing processes of epoxy resin-based composites, J. Applied Polymer Science102 (2006), pp. 5248–525410.1002/app.24773Search in Google Scholar
3 M.A.Megahed, A.A.Megahed, H.E.M.Sallam, U. A.Khashaba, M. A.Seif, M.Abd-Elhamid: Nano-reinforcement effects on tensile properties of epoxy resin, Proc. of the Int. Conf. MEATIP5, Assiut University, Egypt (2011), pp. 123–135Search in Google Scholar
4 X.Zhou, E.Shin, K. W.Wang, C. E.Bakis: Interfacial damping characteristics of carbon nanotube-based composites, Composites Science and Technology64 (2004), pp. 2425–243710.1016/j.compscitech.2004.06.001Search in Google Scholar
5 S.Bal: Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites, Materials and Design31 (2010), pp. 2406–241310.1016/j.matdes.2009.11.058Search in Google Scholar
6 N.Hu, Y.Li, T.Nakamura, T.Katsumata, T.Koshikawa, M.Arai: Reinforcement effects of MWCNT and VGCF in bulk composites and interlayer of CFRP laminates, Composites, Part B43 (2012), pp. 3–910.1016/j.compositesb.2011.04.022Search in Google Scholar
7 S. U.Khan, C. Y.Li, N. A.Siddiqui, J. K.Kim: Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes, Composites Science and Technology71 (2011), pp. 1486–149410.1016/j.compscitech.2011.03.022Search in Google Scholar
8 Y.Zhou, F.Pervin, S.Jeelani, P. K.Mallick: Improvement in mechanical properties of carbon fabric epoxy composite using carbon nanofibers, J. Materials Processing Technology198 (2008), pp. 445–45310.1016/j.jmatprotec.2007.07.028Search in Google Scholar
9 P. R.Mantena, A.Al-Ostaz, A. H. D.Cheng: Dynamic response and simulations of nanoparticle-enhanced composites, Composites Science and Technology69 (2009), pp. 772–77910.1016/j.compscitech.2008.02.035Search in Google Scholar
10 M. R.Ayatollahi, S.Shadlou, M. M.Shokrieh: Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions, Materials and Design32 (2011), pp. 2115–212410.1016/j.matdes.2010.11.034.Search in Google Scholar
11 L.Sun, G.L.Warren, J.Y.O’Reilly, W.N.Everett, S. M.Lee, D.Davis, D.Lagoudas, H. J.Sue: Mechanical properties of surface-functionalized SWCNT/epoxy composites, Carbon (2008), pp. 320–328Search in Google Scholar
12 R. F.Gibson, E. O.Ayorinde, Y. F.Wen: Vibrations of carbon nanotubes and their composites: A review. Composites Science and Technology67 (2007), pp. 1–2810.1016/j.compscitech.2006.03.031Search in Google Scholar
13 D.Qian, C.Dickey, R.Andrews, T.Rantell: Load transfer and deformation mechanism in carbon nanotube-polystyrene composites, Appl. Phys. Lett.76 (2000), No. 20, pp. 2868–287010.1063/1.126500Search in Google Scholar
14 C.Velasco-Santos, A. L.Martinez-Hernandez, F.Fisher, R.Ruoff, V. M.Castano: Dynamic mechanical and thermal analysis of carbon nanotube-methyl-ethyl-methacrylate nanocomposites, J. Phys. D.36 (01/2003), pp. 1423–142810.1088/0022-3727/36/12/311Search in Google Scholar
15 F. L.Jin, S. J.Park: Thermal properties of epoxy resin/filler hybrid composites, Polymer Degradation and Stability97 (2012), pp. 2148–215310.1016/j.polymdegradstab.2012.08.015Search in Google Scholar
16 W.Jiang, F. L.Jin, S. J.Park: Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles, Journal of Industrial and Engineering Chemistry18 (2012), pp. 594–59610.1016/j.jiec.2011.11.140Search in Google Scholar
17 M. S.Goyat, S.Ray, P. K.Ghosh: Innovative application of ultrasonic mixing to produce homogeneously mixed nano-particulate epoxy composite of improved physical properties, Composites Part A42 (2011), pp. 1421–143110.1016/j.compositesa.2011.06.006Search in Google Scholar
18 O.Akinyede, R.Mohan, A.Kelkar, J.Sankar: Static and fatigue behavior of epoxy/fiber glass composites hybridized with alumina nanoparticles, J. Composite Materials43 (2009), pp. 769–78110.1177/0021998309101294Search in Google Scholar
19 H.Zhao, R. K. Y.Li: Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites, Composites Part A39 (2008), pp. 602–61110.1016/j.polymertesting.2012.06.001Search in Google Scholar
20 C.Ocando, A.Tercjak, I.Mondragon: Nanostructured systems based on SBS epoxidized triblock copolymers and well-dispersed alumina/epoxy matrix composites, Composites Science and Technology70 (2010), pp. 1106–111210.1016/j.compscitech.2010.02.020Search in Google Scholar
21 S. H.Lim, K. Y.Zeng, C. B.He: Morphology, tensile and fracture characteristics of epoxy-alumina nanocomposites, Materials Science and Engineering A527 (2010), pp. 5670–567610.1016/j.msea.2010.05.038Search in Google Scholar
22 D. K.Shukla, S. V.Kasisomayajula, V.Parameswaran: Epoxy composites using functionalized alumina platelets as reinforcements, Composites Science and Technology68 (2008), pp. 3055–306310.1016/j.compscitech.2008.06.025Search in Google Scholar
23 M. F.Uddin, C. T.Sun: Improved dispersion and mechanical properties of hybrid nanocomposites, Composites Science and Technology70 (2010), pp. 223–23010.1016/j.compscitech.2009.09.017Search in Google Scholar
24 B.Bittmann, F.Haupert, A. K.Schlarb: Ultrasonic dispersion of inorganic nanoparticles in epoxy resin, Ultrasonics Sonochemistry16 (2009), pp. 622–62810.1016/j.ultsonch.2009.01.006Search in Google Scholar PubMed
25 D. I.Tee, M.Mariatti, A.Azizan, C. H.See, K. F.Chong: Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites, Composites Science and Technology67 (2007), pp. 2584–259110.1016/j.compscitech.2006.12.007Search in Google Scholar
26 C.Chen, R. S.Justice, D. W.Schaefer, J. W.Baur: Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties, Polymer49 (2008), pp. 3805–381510.1016/j.polymer.2008.06.023Search in Google Scholar
27 H. E. M.Sallam, U. A.Khashaba, M. A.Seif, M.Abd-Elhamid, A.A.Megahed, M.A.Megahed: Ultrasonic mixing of nanoparticles in epoxy resin, Proc. of the Int. Conf. on Nano-Technology for Green and Sustainable Construction, Cairo, Egypt (2010), pp. 312–316Search in Google Scholar
28 N.Lachman, H. D.Wagner: Correlation between interfacial molecular structure and mechanics in CNT/epoxy nanocomposites, Composites Part A41 (2010), pp. 1093–109810.1016/j.compositesa.2009.08.023Search in Google Scholar
29 S.Ganguli, H.Aglan, P.Dennig, G.Irvin: Effect of loading and surface modification of MWCNTs on the fracture behavior of epoxy nanocomposites, Journal of Reinforced Plastics and Composites25 (2006), pp. 175–18810.1177/0731684405056425Search in Google Scholar
30 J. P.Yang, Z. K.Chen, Q. P.Feng, Y. H.Deng, Y.Li, Q. Q.Ni, S. Y.Yu: Cryogenic mechanical behaviors of carbon nanotube reinforced composites based on modified epoxy by poly(ethersulfone), Composites Part B43 (2012), pp. 22–2610.1016/j.compositesb.2011.04.025Search in Google Scholar
31 F.Mujika, G.Vargas, J.Ibarretxe, J.De Gracia, A.Arrese: Influence of the modification with MWCNT on the interlaminar fracture properties of long carbon fiber composites, Composites Part B43 (2012), pp. 1336–134010.1016/j.compositesb.2011.11.020Search in Google Scholar
32 V. K.Srivastava: Modeling and mechanical performance of carbon nanotube/epoxy resin composites, Materials and Design39 (2012), pp. 432–43610.1016/j.matdes.2012.02.039Search in Google Scholar
33 M. R.Loos, J.Yang, D. L.Feke, I.Manas-Zloczower: Effect of block-copolymer dispersants on properties of carbon nanotube/epoxy systems, Composites Science and Technology72 (2012), pp. 482–48810.1016/j.compscitech.2011.11.034Search in Google Scholar
34 H. C.Kim, S. K.Kim, J. T.Kim, K. Y.Rhee, J.Kathi: The effect of different treatment methods of multi-walled carbon nanotubes on thermal and flexural properties of their epoxy nanocomposites, J. Polymer Science Part B: Polymer Physics48 (2010), pp. 1175–118410.1002/polb.22007Search in Google Scholar
35 R. M.Lin, C.Lub: Modeling of interfacial friction damping of carbon nanotube-based nanocomposites, Mechanical Systems and Signal Processing24 (2010), pp. 2996–301210.1016/j.ymssp.2010.06.003Search in Google Scholar
36 M.Tanahashi: Development of fabrication methods of filler/polymer nanocomposites: With focus on simple melt-compounding-based approach without surface modification of nanofillers, Materials3 (2010), pp. 1593–1619, 10.3390/ma3031593Search in Google Scholar
37 A.Montazeri, N.Montazeri: Viscoelastic and mechanical properties of multi- walled carbon nanotube/epoxy composites with different nanotube content, Materials and Design32 (2011), pp. 2301–230710.1016/j.matdes.2010.11.003Search in Google Scholar
38 S.Yang, W.Lin, Y.Huang, H.Tien, J.Wang, C. M.Ma, S.Li, Y.Wang: Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon49 (2011), pp. 793–80310.1016/j.memsci.2013.07.064Search in Google Scholar
39 M.Theodore, M.Hosur, J.Thomas, S.Jeelani: Influence of functionalization on properties of MWCNT-epoxy nanocomposites, Materials Science and Engineering A528 (2011), pp. 1192–120010.1016/j.msea.2010.09.095Search in Google Scholar
40 A.Martone, C.Formicola, M.Giordano, M.Zarrelli: Reinforcement efficiency of multi-walled carbon nanotube/epoxy nanocomposites, Composites Science and Technology70 (2010), pp. 1154–116010.1016/j.compscitech.2010.03.001Search in Google Scholar
41 J. S.Jang, J.Varischetti, G. W.Lee, J.Suhr: Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites, Composites Part A42 (2011), pp. 98–10310.1016/j.compositesa.2010.10.008Search in Google Scholar
42 A.Martone, C.Formicola, F.Piscitelli, M.Lavorgna, M.Zarrelli, V.Antonucci, M.Giordano: Thermo-mechanical characterization of epoxy nanocomposites with different carbon nanotube distributions obtained by solvent aided and direct mixing, J. Express Polymer Letters6 (2012), pp. 520–53110.3144/expresspolymlett.2012.56Search in Google Scholar
43 J. L.Tsai, M-D.Wu: Organoclay effect on mechanical responses of glass/epoxy nanocomposites, Compos. Mater.6 (2008), pp. 553–56810.1177/0021998307087514Search in Google Scholar
44 S.Zhao, L. S.Schadler, R.Duncan, H.Hillborg, T.Auletta: Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy, Composites Science and Technology68 (2008), pp. 2965–297510.1016/j.compscitech.2008.01.009Search in Google Scholar
45 O.Asi: Mechanical properties of glass-fiber reinforced epoxy composites filled with Al2O3 particles, J. Reinforced Plastics and Composites28 (2009), pp. 2861–286710.1177/0731684408093975Search in Google Scholar
46 A.Alva, A.Raja: Dynamic characteristics of epoxy hybrid nanocomposites, Journal of Reinforced Plastics and Composites30 No. 22 (2011), pp. 1857–186710.1177/0731684411429394Search in Google Scholar
47 R. M.Rodgers, H.Mahfuz, V. K.Rangari, S.Jeelani, L.Carlsson: Tensile response of SiC nanoparticles reinforced epoxy composites at room and elevated temperatures, Proc. of the 16th Int. Conf. Composite Materials, Kyoto Japan (2007), pp. 1–6Search in Google Scholar
48 I. E.Sawi, P. A.Olivier, P.Demont, H.Bougherara: Investigation of the effect of double-walled carbon nanotubes on the curing reaction kinetics and shear flow of an epoxy resin, Journal of Applied Polymer Science126 (2012), pp. 358–36610.1002/app.36988Search in Google Scholar
49 J.P.Pascault, R.J.J.Williams: Epoxy Polymers – New Materials and Innovations, Wiley-VCH Verlag, Weinheim, Germany (2010) 10.1002/9783527628704.ch1Search in Google Scholar
50 M.Preghenella, A.Pegoretti, C.Migliaresi: Thermo-mechanical characterization of fumed silica-epoxy nanocomposites, Polymer46 (2005), pp. 12065–1207210.1016/j.polymer.2005.10.098Search in Google Scholar
51 T.Zhou, X.Wang, T.Wang: Cure reaction of multi-walled carbon nanotubes/diglycidyl ether of bisphenol A/2-ethyl-4-methylimidazole (MWCNTs/DGEBA/EMI-2,4) nanocomposites: Effect of carboxylic functionalization of MWCNTs, Polym. Int.58 (2009), pp. 445–45210.1002/pi.2558Search in Google Scholar
52 U. A.Khashaba: On the mechanical behavior of [0,+45,90,-45,0] glass/polyester laminate, Proc. of 1st Int. Conf. on Mech. Eng. Adv. Tech. for Indus. Prod., Assiut University, Egypt (1994), pp. 289–301Search in Google Scholar
53 U. A.Khasaba, T. A.Sebaey, K. A.Alnefaie: Failure and reliability analysis of pinned-joints composite laminates: Effects of stacking sequences, Composites: Part B45 (2012), pp. 1694–170310.1177/0021998312457196Search in Google Scholar
54 U. A.Khashaba, A. I.Selmy, I. A.El-Sonbaty, M.Megahed: Behavior of notched and unnotched [0/±30/±60/90]s GFR/epoxy composites under static and fatigue loads, J. Composite Structures81 (2007), pp. 606–61310.1016/j.compstruct.2006.11.005Search in Google Scholar
55 U. A.Khasaba, T. A.Sebaey, K. A.Alnefaie: Failure and reliability analysis of pinned-joints composite laminates: Effects of pin-hole clearance, J. Composite Materials47 (18) (2012), pp. 2287–229810.1177/0021998312457196Search in Google Scholar
56 U. A.Khasaba, T. A.Sebaey, F. F.Mahmoud, A. I.Selmy, R. M.Hamouda: Experimental and numerical analysis of pinned-joints composite laminates: Effects of stacking sequences, Accepted for publication, J. Composite Materials46 (2012), pp. 1345–135510.1177/0021998312464891Search in Google Scholar
57 R. A.Chaudhuri, K.Balaraman: A novel method for fabrication of fiber reinforced plastic laminated plates, Composite Structures77 (2007), pp. 160–17010.1016/j.compstruct.2005.06.010Search in Google Scholar
58 U. A.Khashaba: In-plane shear properties of cross-ply laminates with different off-axis angles; J. Composite Structures65 (2004), pp. 167–17710.1016/j.compstruct.2003.10.012Search in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- A simple procedure for estimating SN-lines for crack initiation from SN-lines for total failure*
- Modellbasierte Korrelation zwischen dem elektrischen Widerstand und der Versetzungsstruktur des ermüdungsbeanspruchten ICE-Radstahls R7
- Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy
- Effect of heat treatment on microstructure and mechanical properties of Fe-5Cr-1.4B alloy
- Interface characterization of friction welded low carbon steel and copper alloys
- Field test methods for aluminum gas cylinders
- Application of the Taguchi method for parameter optimization of the surface grinding process
- A discrete dislocation technique for fatigue microcracks (Part I)
- A discrete dislocation technique for fatigue microcracks (Part II)
- Synchrotron X-ray CT of rose peduncles – evaluation of tissue damage by radiation*
- Surface roughness analysis and optimization for the CNC milling process by the desirability function combined with the response surface methodology
- Design, manufacture and analysis of composite epoxy material with embedded silicon carbide (SiC) and alumina (Al2O3) nanoparticles/fibers
- Performance of organic and inorganic substances as inhibitors for chloride-induced corrosion in concrete
- Fillet welding of austenitic stainless steel using the double channel shielding gas method with cored wire
- Applying quadraphonic transmission ultrasonic defectoscopy on standard aluminum materials
- Kalender/Calendar
- Kalender
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- A simple procedure for estimating SN-lines for crack initiation from SN-lines for total failure*
- Modellbasierte Korrelation zwischen dem elektrischen Widerstand und der Versetzungsstruktur des ermüdungsbeanspruchten ICE-Radstahls R7
- Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy
- Effect of heat treatment on microstructure and mechanical properties of Fe-5Cr-1.4B alloy
- Interface characterization of friction welded low carbon steel and copper alloys
- Field test methods for aluminum gas cylinders
- Application of the Taguchi method for parameter optimization of the surface grinding process
- A discrete dislocation technique for fatigue microcracks (Part I)
- A discrete dislocation technique for fatigue microcracks (Part II)
- Synchrotron X-ray CT of rose peduncles – evaluation of tissue damage by radiation*
- Surface roughness analysis and optimization for the CNC milling process by the desirability function combined with the response surface methodology
- Design, manufacture and analysis of composite epoxy material with embedded silicon carbide (SiC) and alumina (Al2O3) nanoparticles/fibers
- Performance of organic and inorganic substances as inhibitors for chloride-induced corrosion in concrete
- Fillet welding of austenitic stainless steel using the double channel shielding gas method with cored wire
- Applying quadraphonic transmission ultrasonic defectoscopy on standard aluminum materials
- Kalender/Calendar
- Kalender