Startseite The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation

  • Didier Dalmazzone EMAIL logo , Daniele Clausse , Christine Dalmazzone und Benjamin Herzhaft
Veröffentlicht/Copyright: 28. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The stability limits of methane hydrates have been investigated at pressures from 5 to 12 MPa by high-pressure differential scanning calorimetry, in sodium chloride and calcium chloride solutions, at concentrations ranging from pure water to saturated salt, in continuous solutions, in water-in-oil emulsions, as well as in complex dispersed media used as drilling fluids. Experimental results are in good agreement with available data, and concord well with predictions computed using the model of Van der Waals and Platteeuw (1959). DSC experiments revealed eutectic melting of solid mixtures of gas hydrate and crystallized salt. Corresponding invariant temperatures of melting and phase compositions were computed for various gas pressures. Complete phase diagrams are proposed for the systems (methane + water + sodium chloride) and (methane + water + calcium chloride) at 2 MPa and 10 MPa methane pressure.

Received: 2003-9-30
Accepted: 2004-4-21
Published Online: 2015-3-28
Published in Print: 2004-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Introductory overview: Hydrate knowledge development
  2. Scanning Electron Microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates
  3. Dynamics of trimethylene oxide in a structure II clathrate hydrate
  4. The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation
  5. The effect of elevated methane pressure on methane hydrate dissociation
  6. Methane hydrate formation in partially water-saturated Ottawa sand
  7. Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice?
  8. Investigating the performance of clathrate hydrate inhibitors using in situ Raman spectroscopy and differential scanning calorimetry
  9. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate
  10. Experimental studies on the formation of porous gas hydrates
  11. Investigation of jet breakup and droplet size distribution of liquid CO2and water systems—implications for CO2hydrate formation for ocean carbon sequestration
  12. Measurement of clathrate hydrate precipitation from CO2solution by a nondestructive method
  13. Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology
  14. Growth-controlling processes of CO2gas hydrates
  15. Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media
  16. Modeling dynamic marine gas hydrate systems
  17. Late-stage, high-temperature processesing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions
  18. Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma
  19. Nondestructive three-dimensional element-concentration mapping of a Cs-doped partially molten granite by X-ray computed tomography using synchrotron radiation
  20. A theoretical study of structural factors correlated with 23Na NMR parameters
  21. Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif
  22. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China
  23. Letter. Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa
  24. Letter. Periodic precipitation pattern formation in hydrothermally treated metamict zircon
  25. A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2004-8-904/html
Button zum nach oben scrollen